Production of β-cryptoxanthin at Different Artificial Light Spectra by Three Strains of Microalgae
DOI:
https://doi.org/10.59796/jcst.V15N2.2025.107Keywords:
β-Cryptoxanthin, Carotenoids, Microalgae, LED Artificial light, Bioactive compound, AntioxidantAbstract
Microalgae have significant potential for β-cryptoxanthin production. This study aimed to evaluate the effects of white (445, 544 nm), blue (465 nm), and red (660 nm) light-emitting diodes (LEDs) on biomass accumulation, total carotenoid content, and β-cryptoxanthin production in three strains of microalgae: Scenedesmus obliquus, Coelastrum morus, and Chlorococcum sp. Biomass accumulation increased under blue and red LED cultivation, while red LED significantly enhanced carotenoid and β-cryptoxanthin accumulation. β-Cryptoxanthin content in S. obliquus, C. morus, and Chlorococcum sp. cultivated under red LED was 171.92 ± 10.42, 217.35 ± 9.17, and 256.27 ± 8.80 μg/g cell dry weight, respectively. These values represent a 29.43%–33.27% increase compared to cultivation under white and blue LEDs. The antioxidant activity of all microalgal extracts exceeded 85%. These findings highlight the potential of red LED lighting to enhance β-cryptoxanthin production in the investigated microalgae strains.
References
Abd El-Baky, H. H., El Baz, F. K., & El-Baroty, G. S. (2003). Spirulina species as a source of carotenoids and α-tocopherol and its anticarcinoma factors. Biotechnology, 2(3), 222–240. https://doi.org/10.3923/biotech.2003.222.240
Aflalo, C., Meshulam, Y., Zarka, A., & Boussiba, S. (2007). On the relative efficiency of two vs. one‐stage production of astaxanthin by the green alga Haematococcus pluvialis. Biotechnology and Bioengineering, 98(1), 300–305. https://doi.org/10.1002/bit.21391
Al-Amshawee, S., & Yunus, M. Y. B. M. (2019). Influence of light-emitting diode (LED) on microalgae. Journal of Chemical Engineering and Industrial Biotechnology, 5(2), 9–16. https://doi.org/10.15282/jceib.v5i2.3771
Bunea, A., Socaciu, C., & Pintea, A. (2014). Xanthophyll esters in fruits and vegetables. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 42(2), 310-324. https://doi.org/10.15835/nbha.42.2.9700
Burri, B. J., La Frano, M. R., & Zhu, C. (2016). Absorption, metabolism, and functions of β-cryptoxanthin. Nutrition Reviews, 74(2), 69-82. https://doi.org/10.1093/nutrit/nuv064
Chen, H. B., Wu, J. Y., Wang, C. F., Fu, C. C., Shieh, C. J., Chen, C. I., ... & Liu, Y. C. (2010). Modeling on chlorophyll A and phycocyanin production by Spirulina platensis under various light-emitting diodes. Biochemical Engineering Journal, 53(1), 52-56. https://doi.org/10.1016/j.bej.2010.09.004
Chuechomsuk, S., Thumthanaruk, B., Vatanyoopaisarn, S., & Rungsardthong, V. (2025). Enhancement of β-cryptoxanthin production in three different green microalgae species using an innovative red LED wavelength shift approach. Applied Science and Engineering Progress, 18(3), Article 7707.
Danesi, E. D. G., Rangel-Yagui, C. O., Sato, S., & Carvalho, J. C. M. D. (2011). Growth and content of Spirulina platensis biomass chlorophyll cultivated at different values of light intensity and temperature using different nitrogen sources. Brazilian Journal of Microbiology, 42, 362-373. https://doi.org/10.1590/S1517-83822011000100046
de Carvalho, L. M. J., Gomes, P. B., de Oliveira Godoy, R. L., Pacheco, S., do Monte, P. H. F., de Carvalho, J. L. V., ... & Ramos, S. R. R. (2012). Total carotenoid content, α-carotene and β-carotene, of landrace pumpkins (Cucurbita moschata Duch): A preliminary study. Food Research International, 47(2), 337-340. https://doi.org/10.1016/j.foodres.2011.07.040
Erickson, E., Wakao, S., & Niyogi, K. K. (2015). Light stress and photoprotection in Chlamydomonas reinhardtii. The Plant Journal, 82(3), 449-465. https://doi.org/10.1111/tpj.12825
Faraloni, C., & Torzillo, G. (2017). Synthesis of antioxidant carotenoids in microalgae in response to physiological stress (pp. 143-157). United Kingdom: IntechOpen. https://doi.org/10.5772/67843
Hashimoto, H., Sugai, Y., Uragami, C., Gardiner, A. T., & Cogdell, R. J. (2015). Natural and artificial light-harvesting systems utilizing the functions of carotenoids. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 25, 46–70. https://doi.org/10.1016/j.jphotochemrev.2015.07.004
Hiransuchalert, R., Siranonthana, N., Chedtaisong, N., Setthamongkol, P., Yuyen, Y., Watanachote, J., Tapaneeyaworawong, P., Rungsawang, N., & Kutako, M. (2023). Lipid Production of Marine Green Microalgae Chlorella protothecoides BUUC1601 by Using Spent Coffee Grounds Hydrolysate. Journal of Food Health and Bioenvironmental Science, 16(1), 37–45. retrieved from https://li01.tci-thaijo.org/index.php/sdust/article/view/260653
Htwe, N. M. P. S., Rawangpai, M., & Ruangrak, E. (2023). Effect of post-harvesting with different photoperiods under artificial light sources on nitrate and vitamin C contents in hydroponic green oak lettuce. ASEAN Journal of Science and Technology Report, 26(2), 10–19. https://doi.org/10.55164/ajstr.v26i2.247845
Iskandar, A. R., Miao, B., Li, X., Hu, K. Q., Liu, C., & Wang, X. D. (2016). β-Cryptoxanthin reduced lung tumor multiplicity and inhibited lung cancer cell motility by downregulating nicotinic acetylcholine receptor α7 signaling. Cancer Prevention Research, 9(11), 875-886. https://doi.org/10.1158/1940-6207.CAPR-16-0161
Jiao, Y., Reuss, L., & Wang, Y. (2019). β-Cryptoxanthin: chemistry, occurrence, and potential health benefits. Current Pharmacology Reports, 5, 20-34. https://doi.org/10.1007/s40495-019-00168-7
Johra, F. T., Bepari, A. K., Bristy, A. T., & Reza, H. M. (2020). A mechanistic review of β-carotene, lutein, and zeaxanthin in eye health and disease. Antioxidants, 9(11), Article 1046. https://doi.org/10.3390/antiox9111046
Jung, J. H., Sirisuk, P., Ra, C. H., Kim, J. M., Jeong, G. T., & Kim, S. K. (2019). Effects of green LED light and three stresses on biomass and lipid accumulation with two-phase culture of microalgae. Process Biochemistry, 77, 93-99. https://doi.org/10.1016/j.procbio.2018.11.014
Korbee, N., Figueroa, F. L., & Aguilera, J. (2005). Effect of light quality on the accumulation of photosynthetic pigments, proteins, and mycosporine-like amino acids in the red alga Porphyra leucosticta (Bangiales, Rhodophyta). Journal of Photochemistry and Photobiology B: Biology, 80(2), 71–78. https://doi.org/10.1016/j.jphotobiol.2005.03.002
Korkerd, S., Vatanyoopaisarn, S., Visessaguan, W., Thumthanarak, B., Uttapap, D., Mussatto, S. I., & Rungsardthong, V. (2024). Screening, identification, and characterization of high potential bacteria for β-cryptoxanthin production from natural sources. Biocatalysis and Agricultural Biotechnology, 57, Article 103089. https://doi.org/10.1016/j.bcab.2024.103089
Laje, K., Seger, M., Dungan, B., Cooke, P., Polle, J., & Holguin, F. O. (2019). Phytoene accumulation in the novel microalga Chlorococcum sp. using the pigment synthesis inhibitor fluridone. Marine Drugs, 17(3), 187. https://doi.org/10.3390/md17030187
Lamers, P. P., Van De Laak, C. C., Kaasenbrood, P. S., Lorier, J., Janssen, M., De Vos, R. C., ... & Wijffels, R. H. (2010). Carotenoid and fatty acid metabolism in light‐stressed Dunaliella salina. Biotechnology and Bioengineering, 106(4), 638-648. https://doi.org/10.1002/bit.22725
Lavens, P., & Sorgeloos, P. (1996). Manual on the production and use of live food for aquaculture (No. 361). Food and Agriculture Organization (FAO). Retrieved from http://www.fao.org/docrep/003/W3732E/W3732E00.HTM
Lim, Y. Y., Lim, T. T., & Tee, J. J. (2007). Antioxidant properties of several tropical fruits: A comparative study. Food Chemistry, 103(3), 1003–1008. https://doi.org/10.1016/j.foodchem.2006.08.038
Limsitthichaikoon, S., Kuljanabhagavad, T., Vutthipong, A., Panidthananon,W., & Thongphasuk, P. (2024). Consequences of gamma irradiation on triphala’s phytochemical compositions, microbial burden and antioxidant properties. Journal of Current Science and Technology, 14(2), Article 42. https://doi.org/10.59796/jcst.V14N2.2024.42
Ma, G., Zhang, L., Kato, M., Yamawaki, K., Kiriiwa, Y., Yahata, M., ... & Matsumoto, H. (2012). Effect of blue and red LED light irradiation on β-cryptoxanthin accumulation in the flavedo of citrus fruits. Journal of Agricultural and Food Chemistry, 60(1), 197–201. https://doi.org/10.1021/jf203364m
Ma, R., Thomas-Hall, S. R., Chua, E. T., Eltanahy, E., Netzel, M. E., Netzel, G., ... & Schenk, P. M. (2018). LED power efficiency of biomass, fatty acid, and carotenoid production in Nannochloropsis microalgae. Bioresource Technology, 252, 118–126. https://doi.org/10.1016/j.biortech.2017.12.096
Mandelli, F., Miranda, V. S., Rodrigues, E., & Mercadante, A. Z. (2012). Identification of carotenoids with high antioxidant capacity produced by extremophile microorganisms. World Journal of Microbiology and Biotechnology, 28(4), 1781–1790. https://doi.org/10.1007/s11274-011-0993-y
Montonen, J., Knekt, P., Jarvinen, R. I. T. V. A., & Reunanen, A. (2004). Dietary antioxidant intake and risk of type 2 diabetes. Diabetes Care, 27(2), 362-366. https://doi.org/10.2337/diacare.27.2.362
Nakamura, M., & Sugiura, M. (2019). Health effects of β-cryptoxanthin and β-cryptoxanthin-enriched satsuma mandarin juice. In Nutrients in beverages (pp. 393-417). Academic Press. https://doi.org/10.1016/B978-0-12-816842-4.00011-3
Nakamura, M., Sugiura, M., Ogawa, K., Ikoma, Y., & Yano, M. (2016). Serum β-cryptoxanthin and β-carotene derived from satsuma mandarin and brachial–ankle pulse wave velocity: The Mikkabi cohort study. Nutrition, Metabolism and Cardiovascular Diseases, 26(9), 808–814. https://doi.org/10.1016/j.numecd.2016.04.001
Park, G., Horie, T., Fukasawa, K., Ozaki, K., Onishi, Y., Kanayama, T., ... & Hinoi, E. (2017). Amelioration of the development of osteoarthritis by daily intake of β-cryptoxanthin. Biological and Pharmaceutical Bulletin, 40(7), 1116–1120. https://doi.org/10.1248/bpb.b17-00161
Patias, L. D., Fernandes, A. S., Petry, F. C., Mercadante, A. Z., Jacob-Lopes, E., & Zepka, L. Q. (2017). Carotenoid profile of three microalgae/cyanobacteria species with peroxyl radical scavenger capacity. Food Research International, 100, 260–266. https://doi.org/10.1016/j.foodres.2017.06.069
Pattanaik, A., Sukla, L. B., & Pradhan, D. (2018). Effect of LED lights on the growth of microalgae. Inglomayor, 14, 17–24.
Promwong, O., Sinchaipanit, P., Puengputtho, W., & Sirivarasai, J. (2023). Effects of carotenoid-rich jelly consumption on changes in blood concentrations of carotenoids and lipid profiles among obese men. Journal of Basic and Applied Pharmacology, 3(1), O1–O17. Retrieved from https://li01.tci-thaijo.org/index.php/JBAP
Raposo, M. F. D. J., Morais, A. M. M. B. D., & Morais, R. M. S. C. D. (2015). Carotenoids from marine microalgae: A valuable natural source for the prevention of chronic diseases. Marine Drugs, 13(8), 5128-5155. https://doi.org/10.3390/md13085128
Ratha, S. K., Rao, P. H., Govindaswamy, K., Jaswin, R. S., Lakshmidevi, R., Bhaskar, S., & Chinnasamy, S. (2016). A rapid and reliable method for estimating microalgal biomass using a moisture analyser. Journal of Applied Phycology, 28(3), 1725-1734. https://doi.org/10.1007/s10811-015-0731-1
Rauytanapanit, M., Janchot, K., Kusolkumbot, P., Sirisattha, S., Waditee-Sirisattha, R., & Praneenararat, T. (2019). Nutrient deprivation-associated changes in green microalga coelastrum sp. TISTR 9501RE enhanced potent antioxidant carotenoids. Marine Drugs, 17(6), Article 328. https://doi.org/10.3390/md17060328
Rivero-Cruz, J. F., Granados-Pineda, J., Pedraza-Chaverri, J., Pérez-Rojas, J. M., Kumar-Passari, A., Diaz-Ruiz, G., & Rivero-Cruz, B. E. (2020). Phytochemical constituents, antioxidant, cytotoxic, and antimicrobial activities of the ethanolic extract of Mexican brown propolis. Antioxidants, 9(1), Article 70. https://doi.org/10.3390/antiox9010070
Saini, R. K., Nile, S. H., & Park, S. W. (2015). Carotenoids from fruits and vegetables: Chemistry, analysis, occurrence, bioavailability and biological activities. Food Research International, 76, 735-750. https://doi.org/10.1016/j.foodres.2015.07.047
Schulze, P. S., Barreira, L. A., Pereira, H. G., Perales, J. A., & Varela, J. C. (2014). Light emitting diodes (LEDs) applied to microalgal production. Trends in Biotechnology, 32(8), 422-430. https://doi.org/10.1016/j.tibtech.2014.06.001
Shu, C. H., Tsai, C. C., Liao, W. H., Chen, K. Y., & Huang, H. C. (2012). Effects of light quality on the accumulation of oil in a mixed culture of Chlorella sp. and Saccharomyces cerevisiae. Journal of Chemical Technology & Biotechnology, 87(5), 601-607. https://doi.org/10.1002/jctb.2750
Sugiura, M. (2015). β-Cryptoxanthin and the risk for lifestyle-related disease: Findings from recent nutritional epidemiologic studies. Yakugaku Zasshi: Journal of the Pharmaceutical Society of Japan, 135(1), 67-76. https://doi.org/10.1248/yakushi.14-00208-5
Sugiura, M., Nakamura, M., Ogawa, K., Ikoma, Y., & Yano, M. (2016). High vitamin C intake with high serum β-cryptoxanthin associated with lower risk for osteoporosis in post-menopausal Japanese female subjects: Mikkabi cohort study. Journal of Nutritional Science and Vitaminology, 62(3), 185-191. https://doi.org/10.3177/jnsv.62.185
Sun, X. M., Ren, L. J., Zhao, Q. Y., Ji, X. J., & Huang, H. (2018). Microalgae for the production of lipid and carotenoids: a review with focus on stress regulation and adaptation. Biotechnology for Biofuels, 11, 1-16. https://doi.org/10.1186/s13068-018-1275-9
Takayanagi, K., & Mukai, K. (2014). Beta-cryptoxanthin, a novel carotenoid derived from Satsuma mandarin, prevents abdominal obesity. Nutrition in the Prevention and Treatment of Abdominal Obesity, 34, 381-399. https://doi.org/10.1016/B978-0-12-407869-7.00034-9
Thimijan, R. W., & Heins, R. D. (1983). Photometric, radiometric, and quantum light units of measure: a review of procedures for interconversion. HortScience, 18(6), 818-822. https://doi.org/10.21273/HORTSCI.18.6.818
Tran, H. L., Lee, K. H., & Hong, C. H. (2015). Effects of LED irradiation on the growth and Astaxanthin Production of Haematococcus lacustris. Biosciences Biotechnology Research Asia, 12(2), 1167-1173.
Wolf, L., Cummings, T., Müller, K., Reppke, M., Volkmar, M., & Weuster‐Botz, D. (2021). Production of β‐carotene with Dunaliella salina CCAP19/18 at physically simulated outdoor conditions. Engineering in Life Sciences, 21(3-4), 115-125. https://doi.org/10.1002/elsc.202000044
Xie, Y., Ho, S. H., Chen, C. N. N., Chen, C. Y., Ng, I. S., Jing, K. J., ... & Lu, Y. (2013). Phototrophic cultivation of a thermo-tolerant Desmodesmus sp. for lutein production: effects of nitrate concentration, light intensity and fed-batch operation. Bioresource Technology, 144, 435-444. https://doi.org/10.1016/j.biortech.2013.06.064
Xu, Y., & Harvey, P. J. (2019). Carotenoid production by Dunaliella salina under red light. Antioxidants, 8(5), Article 123. https://doi.org/10.3390/antiox8050123
Yilmaz, B., Sahin, K., Bilen, H., Bahcecioglu, I. H., Bilir, B., Ashraf, S., ... & Kucuk, O. (2015). Carotenoids and non-alcoholic fatty liver disease. Hepatobiliary Surgery and Nutrition, 4(3), Article 161. https://doi.org/10.3978/j.issn.2304-3881.2015.01.11
Yokthongwattana, K., Jin, E., & Melis, A. (2019). Chloroplast acclimation, photodamage and repair reactions of photosystem-II in the model green alga Dunaliella salina. In The Alga Dunaliella (pp. 273-300). CRC Press. https://doi.org/10.1201/9780429061639-11
Zhu, C. H., Gertz, E. R., Cai, Y., & Burri, B. J. (2016). Consumption of canned citrus fruit meals increases human plasma β-cryptoxanthin concentration, whereas lycopene and β-carotene concentrations did not change in healthy adults. Nutrition Research, 36(7), 679-688. https://doi.org/10.1016/j.nutres.2016.03.005
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2025 Journal of Current Science and Technology

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.