Application of Metal Oxides Nanoparticles to Enhance Ultraviolet Light Resistance of Polyvinyl Chloride Films

Authors

  • Ahmed K. Hussein Department of Chemistry, College of Education, University of Samarra, Samarra, Salah Al-Din, Iraq
  • Emad A. Yousif Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq
  • Malath K. Rasheed Department of Chemistry, College of Education, University of Samarra, Samarra, Salah Al-Din, Iraq
  • Dina S. Ahmed Department of Chemical Industries, Institute of Technology-Baghdad, Middle Technical University, Baghdad, Iraq
  • Muna Bufaroosha Department of Chemistry, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
  • Mustafa Abdallh Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq
  • Mohammed H. Al-Mashhadani Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq
  • Hassan Hashim Department of Physics, College of Science, Al-Nahrain University, Baghdad, Iraq
  • Alaa Rashad Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq
  • Rahimi M. Yusop School of Chemical Science, Faculty of Science and Technology, University Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
  • Amani Husain Polymer Research Unit, College of Science, Al-Mustansiriyah University, Baghdad, Iraq
  • Ahmed Ahmed Polymer Research Unit, College of Science, Al-Mustansiriyah University, Baghdad, Iraq
  • Gamal A. El-Hiti Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia

DOI:

https://doi.org/10.59796/jcst.V14N3.2024.71

Keywords:

PVC Modification, photodegradition, metal oxides, polymeric films, nano particles, weight loss, carbonyl index

Abstract

Polyvinyl chloride (PVC) films were chemically modified by including organic groups, amino group of ethylenediamine (en), and furtherly treated with aromatic aldehyde. The modification process included synthesizing the films by casting utilizing tetrahydrofuran (THF) as the solvent. The films were enriched with five metal oxide nanoparticles (NPs), specifically: TiO2, Co2O3, Cr2O3, NiO and CuO, in order to enhance their resistance to photodegradation. The films were subjected to UV light. The resulting damage was assessed both analytically and morphologically. The methods used for examination of the chemical structure comprised FT-IR, 1H-NMR, and 13C-NMR spectroscopies. SEM and AFM were utilized to test the morphology of polymeric films. The efficiency of the modified PVC films to resist UV light was assessed by measuring the roughness factor (Rq) of the irradiated PVC films. The incorporation of NPs into the modified PVC resulted in films with high resistance to UV light, as confirmed by FT-IR spectroscopy and weight loss measurement. The film made from modified PVC/Schiff base CuO NPs showed superior resistance to photo-degradation, as evidenced by the findings obtained from FT-IR spectra, surface morphological analysis, and weight loss.

References

Abdulla, N. A. (2023). A state-of art-review of materials, methods, and applications of PVC-FRP-confined concrete. Construction and Building Materials, 363, Article 129719. https://doi.org/10.1016/j.conbuildmat.2022.129719

Abed, R. N., Sattar, M. A., Hameed, S. S., Ahmed, D. S., Al-Baidhani, M., Kadhom, M., ... & Yousif, E. (2023). Optical and morphological properties of poly (vinyl chloride)-nano-chitosan composites doped with TiO2 and Cr2O3 nanoparticles and their potential for solar energy applications. Chemical Papers, 77(2), 757-69. https://doi.org/10.1007/s11696-022-02512-6

Ahmed, A., Al-Mashhadani, M. H., Ahmed, D. S., Ahmed, A. A., Yousif, E., & Yusop, R. M. (2021). Preparation of Polymeric films containing Schiff base as UV-Absorber with Good Resistance against UV-Photoaging. Biointerface Research in Applied Chemistry, 11, 12743-12749. https://doi.org/10.33263/BRIAC115.1274312749

Al-Mashhadani, M. H., Ahmed, D. S., Adil, H., Ahmed, A., Thamer, H., Hamad, B. A., ... & Yousif, E. (2021). A quantitative spectroscopic study of the bleaching phenomena in photo-stabilized formulations containing PVC exposed to outdoor conditions. Materials Today: Proceedings, 42, 2686-2692. https://doi.org/10.1016/j.matpr.2020.12.705

Al-Mashhadani, M. H., Salman, E. A., Husain, A. A., Abdallh, M., Bufaroosha, M., Yousif, E. (2022). Utilizing organic aromatic melamine moiety to modify poly (vinyl chloride) chemical structure and micro CuO that plays an important role to enhance its photophysical features. Indonesian Journal of Chemistry, 22(5), 1187-1194. https://doi.org/10.22146/ijc.70263

Andrady, A. L., Barnes, P. W., Bornman, J. F., Gouin, T., Madronich, S., White, C. C., ... & Jansen, M. A. K. (2022). Oxidation and fragmentation of plastics in a changing environment; from UV-radiation to biological degradation. Science of The Total Environment, 851, Article 158022. https://doi.org/10.1016/j.scitotenv.2022.158022

Arraq, R. R., Hadi, A. G., Ahmed, D. S., Al-Mashhadani, M. H., Hashim, H., Ahmed, A. A., ... & Yousif, E. A. (2023). Color Changes, AFM and SEM Study of PVC/triorganotin (IV)-Cephalexin Complexes Samples Via UV Radiation. Progress in Color, Colorants and Coatings, 16(3), 283-294. https://doi.org/10.30509/pccc.2023.167075.1195

Ashfaq, A., Clochard, M. C., Coqueret, X., Dispenza, C., Driscoll, M. S., Ulański, P., & Al-Sheikhly, M. (2020). Polymerization reactions and modifications of polymers by ionizing radiation. Polymers, 12(12), Article 2877. https://doi.org/10.3390/polym12122877

Biber, N. F., Foggo, A., Thompson, R. C. (2019). Characterising the deterioration of different plastics in air and seawater. Marine pollution bulletin, 141, 595-602. https://doi.org/10.1016/j.marpolbul.2019.02.068

Borrelle, S. B., Ringma, J., Law, K. L., Monnahan, C. C., Lebreton, L., McGivern, A., ... & Rochman, C. M. (2020) Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science, 369(6510), 1515-1518. https://doi.org/10.1126/science.aba3656

Bracco, P., Costa, L., Luda, M. P., & Billingham, N. (2018). A review of experimental studies of the role of free-radicals in polyethylene oxidation. Polymer Degradation and Stability, 155, 67-83. https://doi.org/10.1016/j.polymdegradstab.2018.07.011

Cai, L., Wang, J., Peng, J., Wu, Z., & Tan, X. (2018). Observation of the degradation of three types of plastic pellets exposed to UV irradiation in three different environments. Science of the Total Environment, 628, 740-747. https://doi.org/10.1016/j.scitotenv.2018.02.079

Chayanisa, S., Suvicha, S., Phitsini, S., & Suejit, P. (2021). Analysis of optical detection of ultrasound using PDMS thin film. Journal of Current Science and Technology, 11(2), 197–207. https://ph04.tci-thaijo.org/index.php/JCST/article/view/391

Chen, X., Zhuang, J., Chen, Q., Xu, L., Yue, X., & Qiao, D. (2022). Chronic exposure to polyvinyl chloride microplastics induces liver injury and gut microbiota dysbiosis based on the integration of liver transcriptome profiles and full-length 16S rRNA sequencing data. Science of the Total Environment, 839, Article 155984. https://doi.org/10.1016/j.scitotenv.2022.155984

de Oliveira, M. C. C., Cardoso, A. S. A. D., Viana, M. M., & Lins, V. D. F. C. (2018). The causes and effects of degradation of encapsulant ethylene vinyl acetate copolymer (EVA) in crystalline silicon photovoltaic modules. A review. Renewable and Sustainable Energy Reviews, 81, 2299-2317. https://doi.org/10.1016/j.rser.2017.06.039.

Fotopoulou, K. N,, & Karapanagioti, H. K. (2019). Degradation of various plastics in the environment. Hazardous chemicals associated with plastics in the marine environment (pp.71-92). Springer, Cham. https://doi.org/10.1007/698_2017_11

Hasan, A. A., Al-Mashhadani, M. H., Al-Dahhan, W. H., Hashim, H., & Yousif, E. (2022). Synthesized and designed new modified poly (vinyl chloride) structures to enhance their photo-resistance characteristics. Chemistry, 4(4), 1101-1122. https://doi.org/10.3390/chemistry4040075

Huang, W., Gann, E., Xu, Z. Q., Thomsen, L., Cheng, Y. B., & McNeill, C. R. (2015). A facile approach to alleviate photochemical degradation in high efficiency polymer solar cells. Journal of Materials Chemistry A, 3(31), 16313-16319. https://doi.org/10.1039/C5TA04129E

Jhuo, H. J., Liao, S. H., Li, Y. L., Yeh, P. N., Chen, S. A., Wu, W. R., ... & Jeng, U. S. (2016). The Novel Additive 1‐Naphthalenethiol Opens a New Processing Route to Efficiency‐Enhanced Polymer Solar Cells. Advanced Functional Materials, 26(18), 3094-3104. https://doi.org/10.1002/adfm.201505249

Kadhom, M., Mohammed, A., Ghani, H., Hasan, A. A., Mousa, O. G., Abdulla, R. T., ... & Yousif, E. (2023). Studying the photodecomposition rate constant and morphology properties of modified poly (vinyl chloride) with novel Schiff's bases. Journal of Vinyl and Additive Technology, 29(5), 923-933. https://doi.org/10.1002/vnl.22027

Khan, A., Shah, S. F. A., Majeed, K., Hameed, I., Najam, M., Hasan, M., ... & Akhtar, M. S. (2022). Polymeric membranes for environmental remediation: A product space model perspective. Chemosphere, 304, Article 135236. https://doi.org/10.1016/j.chemosphere.2022.135236

Kim, Y., Yeom, H. R., Kim, J. Y., & Yang, C. (2013). High-efficiency polymer solar cells with a cost-effective quinoxaline polymer through nanoscale morphology control induced by practical processing additives. Energy & Environmental Science, 6(6), 1909-1916. https://doi.org/10.1039/C3EE00110E

Li, W., Bai, Z., Zhang, T., Jia, Y., Hou, Y., Chen, J., ... & Li, W. (2023). Comparative study on pyrolysis behaviors and chlorine release of pure PVC polymer and commercial PVC plastics. Fuel, 340, Article 127555. https://doi.org/10.1016/j.fuel.2023.127555

Mahdi, S. A., Ahmed, A. A., Yousif, E., Al-Mashhadani, M. H., Ahmed, A., Hashim, H., & Jawad, A. H. (2022). New organic PVC photo-stabilizers derived from synthesised novel coumarine moieties. Materials Science for Energy Technologies, 1(5), 278-93. https://doi.org/10.1016/j.mset.2022.04.002

Miliute-Plepiene, J., Fråne, A., & Almasi, A. M. (2021). Overview of polyvinyl chloride (PVC) waste management practices in the Nordic countries. Cleaner Engineering and Technology, 4, Article 100246. https://doi.org/10.1016/j.clet.2021.100246

Mohammed, A., Al-Mashhadani, M. H., Ahmed, A. U., Kassim, M. M., Haddad, R. A., Rashad, A. A., ... & Yousif, E. (2021, March 23-24). Evaluation the proficiency of irradiative poly (vinyl chloride) films in existence of di-and tri-organotin (IV) complexes [Conference presentation]. 1st Samarra International Conference for Pure and Applied Sciences (Sicps2021): Sicps2021. AIP Publishing. Samarra, Iraq. https://doi.org/10.1063/5.0121128

Petrović, E. K., & Hamer, L. K. (2018). Improving the healthiness of sustainable construction: example of polyvinyl chloride (PVC). Buildings, 8(2), Article 28. https://doi.org/10.3390/buildings8020028

Prasita, J., Peerapong, P., Phakkhaphum, L., Pollawat, J., Suparuj, L., & Premjit, J. (2021). Development and evaluation of “Safe, Affordable, Friendly, and Effective” UVC sterilizer for reusing N95 medical masks. Journal of Current Science and Technology, 11(2), 311–323. https://ph04.tci-thaijo.org/index.php/JCST/article/view/436

Quitadamo, A., Massardier, V., & Valente, M. (2019). Eco-friendly approach and potential biodegradable polymer matrix for WPC composite materials in outdoor application. International Journal of Polymer Science, 2019, Article 3894370. https://doi.org/10.1155/2019/3894370

Raad, R., & Abdallh, M. (2022). Surface modification to enhance photo-stability of polymers. GSC Advanced Research and Reviews, 11(2), 080-088. https://doi.org/10.30574/gscarr.2022.11.2.0130

Song, Y. K., Hong, S. H., Jang, M., Han, G. M., Jung, S. W., & Shim, W. J. (2017). Combined effects of UV exposure duration and mechanical abrasion on microplastic fragmentation by polymer type. Environmental science & technology, 51(8), 4368-4376. https://doi.org/10.1021/acs.est.6b06155.

Vohlídal, J. (2021). Polymer degradation: a short review. Chemistry Teacher International, 3(2), 213-220. https://doi.org/10.1515/cti-2020-0015

Watt, E., Picard, M., Maldonado, B., Abdelwahab, M. A., Mielewski, D. F., Drzal, L. T., ... & Mohanty, A. K. (2021). Ocean plastics: environmental implications and potential routes for mitigation–a perspective. RSC advances, 11(35), 21447-21462. https://doi.org/10.1039/D1RA00353D

Wirawan, R., Sapuan, S. M., Yunus, R., & Abdan, K. (2011). Properties of sugarcane bagasse/poly(vinyl chloride) composites after various treatments. Journal of Composite Materials, 45, 1667-1674. https://doi.org/10.1177/0021998310385030.

Yaseen, A. A., Al-Tikrity, E. T., El-Hiti, G. A., Ahmed, D. S., Baashen, M. A., Al-Mashhadani, M. H., & Yousif, E. (2021). A process for carbon dioxide capture using Schiff bases containing a trimethoprim unit. Processes, 9(4), Article 707. https://doi.org/10.3390/pr9040707

Yokesahachart, C., & Pajareon, S. (2020). Comparative study of physico-mechanical properties, thermal stability and water absorption of biodegradable films prepared from commercial oxidized and cross-linked cassava starches. Journal of Current Science and Technology, 10(2), 121–129. https://ph04.tci-thaijo.org/index.php/JCST/article/view/386

Yu, J., Sun, L., Ma, C., Qiao, Y., & Yao, H. (2016). Thermal degradation of PVC: A review. Waste management, 48, 300-314. https://doi.org/10.1016/j.wasman.2015.11.041

Downloads

Published

2024-09-01

How to Cite

K. Hussein, A., A. Yousif, E., K. Rasheed, M., S. Ahmed, D., Bufaroosha, M., Abdallh, M., H. Al-Mashhadani, M., Hashim, H., Rashad, A., M. Yusop, R., Husain, A., Ahmed, A., & A. El-Hiti, G. (2024). Application of Metal Oxides Nanoparticles to Enhance Ultraviolet Light Resistance of Polyvinyl Chloride Films. Journal of Current Science and Technology, 14(3), Article 71. https://doi.org/10.59796/jcst.V14N3.2024.71

Issue

Section

Research Article