Analysis of optical detection of ultrasound using PDMS thin film

Authors

  • Chayanisa Sukkasem College of Biomedical Engineering, Rangsit University, Patumthani 12000, Thailand
  • Suvicha Sasivimolkul College of Biomedical Engineering, Rangsit University, Patumthani 12000, Thailand
  • Phitsini Suvarnaphaet College of Biomedical Engineering, Rangsit University, Patumthani 12000, Thailand
  • Suejit Pechprasarn College of Biomedical Engineering, Rangsit University, Patumthani 12000, Thailand

Keywords:

optical detection, optical sensor, optoacoustic technique, PDMS, ultrasound detection, ultrasonic wave

Abstract

Medical diagnosis and treatments via ultrasound imaging have been challenged to developed using optical detection for sensing signals.  The original technique employs a piezoelectric transducer to convert the mechanical energy to electrical energy during creating and sensing the ultrasound signal.  However, this technique has some limitations in sensitivity, detection bandwidth, and temperature sensitivity.  Herein, we report the simulation results of the optical detection of ultrasonic waves using elastic thin-film material made of polydimethylsiloxane (PDMS).  The thickness in the micro-scale of the uniform layer of PDMS at 20 mm thick was observed at the 2 MHz of ultrasonic frequency, showing the PDMS displacement changed linearly by 4.6x10-13 m×Pa-1.  The response can be detected using the optoacoustic technique with the light at 685 nm wavelength. As the PDMS thickness changed, the responses of light shifted in reflectance and phases, reported the sensitivities of 5.6x10-7 Pa-1 and 1x10-4 rad×Pa-1, respectively.  Compared with the traditional detections, the PDMS optical detection using the phase shift achieved much higher sensitivity about 30 times while the detection using the reflectance shift found lower sensitivity 5 times.  Nevertheless, the microscale optical sensor's advantage in this work could be an alternative technique because its implementation can be fabricated simpler than traditional sensors and does not require complicated processes.

References

Abazari, A., Safavi, S. M., Rezazadeh, G., & Villanueva, L. G. (2015). Modelling the size effects on mechanical properties of micro/nano structures. Sensors, 15(11), 28543-28562. DOI: 10.3390/s151128543

Ashkenazi, S., Chao, C.-Y., Guo, L., & O'Donnell, M. (2004). Ultrasound detection using polymer microring optical resonator. Applied Physics Letters, 85(22): 5418-5420. DOI: 10.1063/1.1829775

Beard, P. C., Perennes, F., & Mills, T. N. (1999). Transduction mechanisms of the Fabry-Perot polymer film sensing concept for wideband ultrasound detection. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 46(6), 1575-1582. DOI: 10.1109/58.808883

Bhargava, N., Mor, R. S., Kumar, K., & Sharanagat, V. S. (2021). Advances in application of ultrasound in food processing: A review. Ultrasonics Sonochemistry, 70, 105293. DOI: https://doi.org/10.1016/j.ultsonch.2020.105293

Carovac, A., Smajlovic, F., & Junuzovic, D. (2011). Application of ultrasound in medicine. Acta informatica medica : AIM : journal of the Society for Medical Informatics of Bosnia & Herzegovina : casopis Drustva za medicinsku informatiku BiH, 19(3), 168-171. DOI: 10.5455/aim.2011.19.168-171

Chávez, M., Sosa, V., & Tsumura, R. (1985). Speed of sound in saturated pure water. Journal of The Acoustical Society of America - J ACOUST SOC AMER, 77(2), 420-423. DOI: 10.1121/1.391861

Chao, C., Ashkenazi, S., Huang, S., Donnell, M. O., & Guo, L. J. (2007). High-frequency ultrasound sensors using polymer microring resonators. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 54(5), 957-965. DOI: 10.1109/TUFFC.2007.341

Chemat, F., & Khan, M. K. (2011). Applications of ultrasound in food technology: processing, preservation and extraction. Ultrasonics sonochemistry, 18(4), 813-835. DOI: https://doi.org/10.1016/j.ultsonch.2010.11.023

Coatney, R. W. (2001). Ultrasound imaging: principles and applications in rodent research. ILAR journal, 42(3), 233-247. DOI: 10.1093/ilar.42.3.233

Couture, O., Fink, M., & Tanter, M. (2012). Ultrasound contrast plane wave imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 59(12), 2676-2683. DOI: 10.1109/tuffc.2012.2508

Dogru, S., Aksoy, B., Bayraktar, H., & Alaca, B. E. (2018). Poisson's ratio of PDMS thin films. Polymer Testing, 69, 375-384. DOI: https://doi.org/10.1016/j.polymertesting.2018.05.044

Dong, B., Sun, C., & Zhang, H. F. (2017). Optical detection of ultrasound in photoacoustic imaging. IEEE transactions on bio-medical engineering, 64(1), 4-15. DOI: 10.1109/TBME.2016.2605451

Gallo, M., Ferrara, L., & Naviglio, D. (2018). Application of ultrasound in food science and technology: A perspective. Foods (Basel, Switzerland), 7(10), 164. DOI: 10.3390/foods7100164

Hale, G. M., & Querry, M. R. (1973). Optical Constants of Water in the 200-nm to 200-microm Wavelength Region. Applied Optics, 12(3), 555-563. DOI: 10.1364/ao.12.000555

Hsiao, Y. H., Kuo, S. J., Tsai, H. D., Chou, M. C., & Yeh, G. P. (2016). Clinical application of high-intensity focused ultrasound in cancer therapy. Journal of cancer, 7(3), 225. DOI: 10.7150/jca.13906

Learkthanakhachon, S., Pechprasarn, S., & Somekh, M. G. (2018). Optical detection of ultrasound by lateral shearing interference of a transparent PDMS thin film. Optics Letters, 43(23), 5797. DOI: 10.1364/OL.43.005797

Li, S., & Mueller, K. (2005). Accelerated, high-quality refraction computations for volume graphics. Proceedings of the Fourth Eurographics / IEEE VGTC conference on Volume GraphicsJune 2005 Pages 73-81.

Lowndes, R., & Hallett, M. B. (1986). A versatile light microscope heating stage for biological temperatures. Journal of microscopy, 142(3), 371-374. DOI: https://doi.org/10.1111/j.1365-2818.1986.tb04292.x

Manbachi, A., & Cobbold, R. S. C. (2011). Development and application of piezoelectric materials for ultrasound generation and detection. Ultrasound, 19(4), 187-196. DOI: 10.1258/ult.2011.011027

Mata, A., Fleischman, A., & Roy, S. (2006). Characterization of Polydimethylsiloxane (PDMS) Properties for Biomedical Micro/Nanosystems. Biomedical Microdevices, 7(4), 281-293. DOI: 10.1007/s10544-005-6070-2

Maxwell, A., Huang, S.-W., Ling, T., Kim, J.-S., Ashkenazi, S., & Guo, L. J. (2008). Polymer microring resonators for high-frequency ultrasound detection and imaging. IEEE journal of selected topics in quantum electronics: a publication of the IEEE Lasers and Electro-optics Society, 14(1), 191-197. DOI: 10.1109/JSTQE.2007.914047

Nakamura, T., Tsutsumi, N., Juni, N., & Fujii, H. (2005). Thin-film waveguiding mode light extraction in organic electroluminescent device using high refractive index substrate. Journal of applied physics, 97(5), 054505.

Nasiriavanaki, M., Xia, J., Wan, H., Bauer, A. Q., Culver, J. P., & Wang, L. V. (2014). High-resolution DOI: https://doi.org/10.1063/1.1858875photoacoustic tomography of resting-state functional connectivity in the mouse brain. Proceedings of the National Academy of Sciences, 111(1), 21-26. DOI: https://doi.org/10.1073/pnas.1311868111

Pottier, B., Ducouret, G., Frétigny, C., Lequeux, F., & Talini, L. (2011). High bandwidth linear viscoelastic properties of complex fluids from the measurement of their free surface fluctuations. Soft Matter, 7(17), 7843-7850. DOI: 10.1039/C1SM05258F

Sangworasil, M., Pechprasarn, S., Learkthanakhachon, S., Ittipornnuson, K., Suvarnaphaet, P., & Albutt, N. (2016, 7-9 Dec. 2016). Investigation on feasibility of using surface plasmons resonance (SPR) sensor for ultrasonic detection: A novel optical detection of ultrasonic waves. Paper presented at the 2016 9th Biomedical Engineering International Conference (BMEiCON 2016). Laung Prabang, Laos 7-9 December 2016.

Schneider, F., Draheim, J., Kamberger, R., & Wallrabe, U. (2009). Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS. Sensors and Actuators A: Physical, 151(2), 95-99. DOI: https://doi.org/10.1016/j.sna.2009.01.026

Sinisterra, J. V. (1992). Application of ultrasound to biotechnology: an overview. Ultrasonics, 30(3), 180-185. doi:https://doi.org/10.1016/0041-624X(92)90070-3

Thangawng, A. L., Ruoff, R. S., Swartz, M. A., & Glucksberg, M. R. (2007). An ultra-thin PDMS membrane as a bio/micro–nano interface: fabrication and characterization. Biomedical Microdevices, 9(4), 587-595. DOI: 10.1007/s10544-007-9070-6

Yan, Y., Zhou, P., Zhang, S.-X., Guo, X.-G., & Guo, D.-M. (2018). Effect of substrate curvature on thickness distribution of polydimethylsiloxane thin film in spin coating process. Chinese Physics B, 27(6), 068104. DOI: 10.1088/1674-1056/27/6/068104

Yao, J., Xia, J., Maslov, K. I., Nasiriavanaki, M., Tsytsarev, V., Demchenko, A. V., & Wang, L. V. (2013). Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo. Neuroimage, 64, 257-266. DOI: 10.1016/j.neuroimage.2012.08.054

Yevick, D., Rolland, C., Bardyszewski, W., & Hermansson, B. (1990). Fresnel studies of reflected beams. IEEE Photonics Technology Letters, 2(7), 490-492. DOI: 10.1109/68.56630

Zhang, J. X. J., & Hoshino, K. (2019). Chapter 5 - Optical transducers: Optical molecular sensing and spectroscopy. In J. X. J. Zhang & K. Hoshino (Eds.), Molecular Sensors and Nanodevices (Second Edition) (pp. 231-309): Academic Press. Principles, Designs and Applications in Biomedical Engineering Micro and Nano Technologies. DOI: https://doi.org/10.1016/B978-0-12-814862-4.00005-3

Zhang, X., Weng, C., Wu, S., Cai, J., Wu, H., Li, Z., ... & Li, H. (2019). Photoacoustic identification of blood vessel deformation under pressure. AIP Advances, 9(7), 075019. DOI: https://doi.org/10.1063/1.5108852

Downloads

Published

2023-02-16

How to Cite

Chayanisa Sukkasem, Suvicha Sasivimolkul, Phitsini Suvarnaphaet, & Suejit Pechprasarn. (2023). Analysis of optical detection of ultrasound using PDMS thin film. Journal of Current Science and Technology, 11(2), 197–207. Retrieved from https://ph04.tci-thaijo.org/index.php/JCST/article/view/391

Issue

Section

Research Article