Eliminating the static errors of state variables by using real-time cascaded flatness-based control for induction motors
Keywords:
flatness-based control, induction motor, nonlinear system, real-time controlAbstract
Induction Motor (IM) can be found in many industrial applications such as precision machining and automation processes, especially robotics. In this paper, firstly, we investigate the problem of nonlinear discrete-time flatness-based controller design for IM. Secondly, we propose a new control strategy named cascaded flatness-based control (CFBC) by considering the nonlinear characteristics of IM in order to eliminate the static errors of state variables. Simulation is shown to demonstrate the benefits of the proposed CFBC and the performance evaluation is given by experimental results.
References
Beaty, H. W., & Kirtley, J. L. (1998). Electric motor handbook. New York, USA: McGraw-Hill.
Broocker, M., & Lemmen, M. (2001). Nonlinear control methods for disturbance rejection on a hydraulically driven flexible robot. In Proceedings of the Second International Workshop on Robot Motion and Control. RoMoCo'01 (IEEE Cat. No.01EX535), Bukowy Dworek, Poland, 2001, pp. 213-218. DOI: 10.1109/ROMOCO.2001.973457
Dang, X. K., Ho, L. A. H., Do, V.-D. (2018). Analyzing the sea weather effects to the ship maneuvering in Vietnam’s Sea from BinhThuan province to Ca Mau province based on fuzzy control method. TELKOMNIKA Telecommunication, Computing, Electronics and Control, 16(2), 533-543. DOI: http://dx.doi.org/10.12928/telkomnika.v16i2.7753
Dang, X., Guan, Z., Tran, H., & Li, T. (2011). Fuzzy adaptive control of networked control system with unknown time-delay. In Proceedings of the 30th Chinese Control Conference, Yantai, China, pp. 22-24.
Dannehl, J., & Fuchs, F., W. (2006). Flatness-based control of an induction machine fed via voltage source inverter - concept, control design and performance analysis. IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics, 5125-5130. DOI: 10.1109/IECON.2006.347840
Delaleau, E. & Stankovic, A. M. (2004). Flatness-based hierarchical control of the PM synchronous. Proceedings of the 2004 American Control Conference, Boston, MA, USA, 2004, vol.1, 65-70. DOI:10.23919/acc.2004.1383580
Do, V.-D., & Dang, X. K. (2018). Optimal control for dynamic positioning system based on fuzzy-PSO advanced technical. TELKOMNIKA (Telecommunication, Computing, Electronics and Control) Vol.16, No.6, pp. 2999-3007. DOI: 10.12928/TELKOMNIKA.v16i6.8979
Do, V.-D., & Dang, X. K. (2019). The fuzzy particle swarm optimization algorithm design for dynamic positioning system under unexpected impacts. Journal of Mechanical Engineering and Sciences (JMES), 13(3), 5407-5423. DOI: https://doi.org/10.15282/jmes.13.3.2019.13.0439
Fan, L., & Zhang, L. (2011a). Fuzzy based flatness control of an induction motor. Procedia Engineering, 23, 72-76. DOI: https://doi.org/10.1016/j.proeng.2011.11.2467
Fan. L., & Liang. Z. (2011b). An improved vector control of an induction motor based on flatness. Procedia Engineering, 15(November), 624-628. DOI: http://dx.doi.org/10.1016/j.proeng.2011.08.116
Faustner, D., Kemmetmuller, W., & Kugi, A. (2015). Field weakening in flatness-based torque control of saturated surface-mounted permanent magnet synchronous machines. In 2015 IEEE Conference on Control Applications (CCA), Sydney, NSW, 2015, pp. 858-863. DOI: 10.1109/CCA.2015.7320725
Faustner, D., Kemmetmüller, W., & Kugi, A. (2016). Experimental parameterization of a design model for flatness-based torque control of a saturated surface-mounted PMSM. IFAC-PapersOnLine, 49(21): 575-582. DOI: http://dx.doi.org/10.1016/j.ifacol.2016.10.663
Fliess, M., & Marquez, R. (2000). Continuous-time linear predictive control and flatness: A module-theoretic setting with examples. International Journal of Control, 73(7), 606-623. DOI: https://doi.org/10.1080/002071700219452
Fliess, M., Lévine, J., Martin, P., & Rouchon, P. (1992). On differentially flat nonlinear systems. IFAC Proceedings, 25(13), 159-163. DOI: https://doi.org/10.1016/S1474-6670(17)52275-2
Fliess, M., Lévine, J., Martin, P., & Rouchon, P. (1999). A Lie-Bäcklund approach to equivalence and flatness of nonlinear systems. In IEEE Transactions on Automatic Control, 44(5), 922-937. DOI: 10.1109/9.763209
Graichen, K., Hagenmeyer, V., & Zeitz, M. (2006). Feedforward control with online parameter estimation applied to the Chylla-Haase reactor benchmark. Journal of Process Control, 16, 733-745. DOI: 10.1016/j.jprocont.2006.01.001
Hagenmeyer, V., & Delaleau, E. (2003). Exact feedforward linearization based on differential flatness. International Journal of Control, 76(6), 537-556. DOI: https://doi.org/10.1080/0020717031000089570
Hagenmeyer, V., & Delaleau, E. (2004). A robustness analysis with respect to exogenous perturbations for flatness-based exact feedforward linearization. IFAC Proceedings Volumes, 37(13), 195-200. DOI: https://doi.org/10.1016/S1474-6670(17)31222-3
Hagenmeyer, V., & Delaleau, E. (2008). Continuous-time non-linear flatness-based predictive control: An exact feedforward linearisation setting with an induction drive example. International Journal of Control, 81(10), 1645-1663. DOI: https://doi.org/10.1080/00207170802090177
Hagenmeyer, V., & Delaleau, E. (2010). Robustness analysis with respect to exogenous perturbations for flatness-based exact feedforward linearization. In IEEE Transactions on Automatic Control, 55(3), 727-731. DOI: 0.1109/TAC.2010.2040425
Henke, B., Rue, A., Neumann, R., Zeitz, M., & Sawodny, O. (2014). Flatness-based MIMO control of hybrid stepper motors - design and implementation. In 2014 American Control Conference, Portland, OR, 2014, pp. 347-352. DOI: 10.1109/ACC.2014.6858602
Houari, A., Renaudineau, H., Martin, J.-P., Pierfederici, S., & Meibody-Tabar, F. (2012). Flatness-based control of three-phase inverter with output LC filter. In IEEE Transactions on Industrial Electronics, 59(7), 2890-2897. DOI: 10.1109/TIE.2011.2170396
Levine, J. (2009). Analysis and control of nonlinear system: A flatness-based approach. Springer (c). ISBN: 978-3-642-00838-2. https://www.springer.com/gp/book/9783642008382
Maaziz, M., Siguerdidjane, H., Boucher, P., & Dumur, D. (1999). Nonlinear predictive control of current-fed induction motor based on differential flatness properties. In Proceedings 5th European Control Conference (ECC), Karlsruhe, Germany, pp. 803-808. DOI: 10.23919/ECC.1999.7099404
Mahadevan, R., Agrawal, S., & Doyle, F. (2001). Differential flatness based nonlinear predictive control of fed-batch bioreactors. Control Engineering Practice, 9, 889-899. DOI: 10.1016/S0967-0661(01)00054-5
Noda, Y., Zeitz, M., Sawodny, O., & Terashima, K. (2011). Flow rate control based on differential flatness in automatic pouring robot. In Proceedings of IEEE International Conference on Control Applications (CCA). Denver, CO, USA. DOI: 10.1109/CCA.2011.6044508
Sira-Ramirez, H. (2000). A passivity plus flatnedd controller for the permanent magnet stepper motor. Asian Journal of Control, 2(1), 1 – 9. DOI: 10.1111/j.1934-6093.2000.tb00139.x
Thanh, P. T., & Quang, N. P. (2013). Quasi-Continuous Implementation of Structural Nonlinear Controller Based on Direct-Decoupling for Permanent Magnet Synchronous Motor. IEEE International Conference on Control, Automation and Information Sciences, Nha Trang, Vietnam, 283-288. DOI: 10.1109/ICCAIS.2013.6720569
Thomsen, S., & Fuchs, F. W. (2010). Flatness based speed control of drive systems with resonant loads. IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society, Glendale, AZ, 2010, pp. 120-125. DOI: 10.1109/IECON.2010.5675188
Wang, X., Zhong, H., Yang, Y., & Mu, X. (2010). Study of a novel energy efficient single-phase induction motor with three series-connected windings and two capacitors. IEEE Transactions on Energy Conversion, 25(2), 433-440. DOI: 10.1109/TEC.2009.2039218
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.