Effects of Plasticizers on Characterization of Biodegradable Film Based on Tamarind Kernel Polysaccharide


  • Panitee Suwanamornlert College of Integrative Medicine, Dhurakij Pundit University, Bangkok 10210, Thailand
  • Takunrat Taksima College of Integrative Medicine, Dhurakij Pundit University, Bangkok 10210, Thailand
  • Pongsura Thanyacharoen-anukul College of Integrative Medicine, Dhurakij Pundit University, Bangkok 10210, Thailand




biopolymer, flexibility, plasticization, tamarind kernel polysaccharide, thermal behavior, transparency


Tamarind kernel polysaccharide-based film was formulated to study the effects of polyethylene glycol 400, glycerol, sorbitol, tween 80, tween 40, tween 20 and span 20 on mechanical, optical, and thermal properties. Addition of plasticizers to tamarind kernel polysaccharide led to changes in tensile strength, elastic modulus, and elongation at break of the films. The tensile strength of films containing polyethylene glycol 400, glycerol, sorbitol, tween 20 and span 20 was lower than films containing tween 80, tween 40 and non-plasticized film. Sorbitol-plasticized film exhibited the best mechanical properties with lowest tensile strength, 6.07 MPa and highest elongation at break 5.91%. Film containing sorbitol also showed highest optical transparency, while polyethylene glycol 400 and glycerol exhibited lowest transparency and highest whiteness index. Differential scanning calorimetry (DSC) revealed that incorporation of plasticizers increased the mobility of the polymer chains. The addition of sorbitol, glycerol, and tween 20 reduced the glass transition temperature of tamarind kernel polysaccharide film from 49.81 to 20.97, 42.41 and 42.92 °C, respectively. Sorbitol proved to be an effective plasticizer for improving flexibility and enhancing the optical property of tamarind kernel polysaccharide film. As a result of the research, it was discovered that tamarind kernel polysaccharide film plasticized with sorbitol has the potential to be used in the creation of biopolymer film for culinary and biomedical applications.


Ajovalasit, A., Sabatino, M. A., Todaro, S., Alessi, S., Giacomazza, D., Picone, P., ... & Dispenza, C. (2018). Xyloglucan-based hydrogel films for wound dressing: Structure-property relationships. Carbohydrate Polymers, 179, 262-272. https://doi.org/10.1016/j.carbpol.2017.09.092

ASTM (2018). Standard test methods for tensile properties of thin plastic sheeting (Vol. D882-18). West Conshohocken, PA: ASTM international.

Agarwal, S., Hoque, M., Bandara, N., Pal, K., & Sarkar, P. (2020). Synthesis and characterization of tamarind kernel powder-based antimicrobial edible films loaded with geraniol. Food Packaging and Shelf life, 26, Article 100562. https://doi.org/10.1016/j.fpsl.2020.100562

Antoniou, J., Liu, F., Majeed, H., Qazi, H. J., & Zhong, F. (2014). Physicochemical and thermomechanical characterization of tara gum edible films: Effect of polyols as plasticizers. Carbohydrate Polymers, 111, 359-365. https://doi.org/10.1016/j.carbpol.2014.04.005

Alpizar-Reyes, E., Cortés-Camargo, S., Román-Guerrero, A., & Pérez-Alonso, C. (2022). Tamarind gum as a wall material in the microencapsulation of drugs and natural products. In Micro and Nano Technologies, Micro and nanoengineered gum-based biomaterials for drug delivery and biomedical applications. (pp. 347-382). Amsterdam: Academic Press. https://doi.org/10.1016/B978-0-323-90986-0.00016-9

Aydinli, M., Tutas, M., & Bozdemir, O. A. (2004). Mechanical and light transmittance properties of locust bean gum based edible films. Turkish Journal of Chemistry, 28(3), 163-172.

Bergström, E. M., Salmén, L., Kochumalayil, J., Berglund, L. (2012). Plasticized xyloglucan for improved toughness—Thermal and mechanical behaviour. Carbohydrate Polymers, 87, 2532-2537. https://doi.org 10.1016/j.carbpol.2011.11.024

Carvalho, R. T. R., Pedrosa, C. D., Leal, A. C. P., Palermo, L. C. M., & Mansur, C. R. E. (2022). Extraction, characterization and rheological behavior of tamarind gum under high salinity. Brazilian Journal of Analytical Chemistry, 9(35), 62-75. https://doi.org 10.30744/brjac.2179-3425.AR-104-2021

Choi, J., Lee, J., Han, J., & Chang, Y. (2023). Development of gelatin–sodium caseinate high-oxygen-barrier film containing elderberry (Sambucus nigra L.) extract and its antioxidant capacity on pork. Food Bioscience, 53, 102617. https://doi.org/10.1016/j.fbio.2023.102617

Chou, M. Y., Osako, K., Lee, T. A., Wang, M. F., Lu, W. C., Wu, W. J., ... & Ho, J. H. (2023). Characterization and antibacterial properties of fish skin gelatin/guava leaf extract bio-composited films incorporated with catechin. LWT, 178 (15), Article 114568. https://doi.org/10.1016/j.lwt.2023.114568

Effendi, A. D., Jiaqi, L., Sia, C. W., Jasamai, M., & Sulaimon, A. A. (2022). Polysaccharides from Tamarindus indica L. as natural kinetic hydrates inhibitor at high subcooling environment. Journal of Petroleum Exploration and Production Technology, 12(10), 2711-722. https://doi.org/10.1007/s13202-022-01477-2

Garti, N., Aserin, A., & Kopilovich, A. (1986). Transparent macroemulsions for cosmetic applications. International Journal of Cosmetic Science, 8(1), 1-8. https://doi.org/10.1111/j.1467-2494.1986.tb00425.x

Gupta, I., Cherwoo, L., Bhatia, R., & Setia, H. (2022). Biopolymers: Implications and application in the food industry. Biocatalysis and Agricultural Biotechnology, 46, Article 102534. https://doi.org/10.1016/j.bcab.2022.102534

Haghighatpanah, N., Omar-Aziz, M., Gharaghani, M., Khodaiyan, F., Hosseini, H. H., & Kennedy, J. H. (2022). Effect of mung bean protein isolate/pullulan films containing marjoram (Origanum majorana L.) essential oil on chemical and microbial properties of minced beef meat. International Journal of Biological Macromolecules, 201, 318-329. https://doi.org/10.1016/j.ijbiomac.2022.01.023

Haq, M. A., Hasnain, A., & Azam, M. (2014). Characterization of edible gum cordia film: Effects of plasticizers. LWT - Food Science and Technology, 55, 163-169. https://doi.org/10.1016/j.lwt.2013.09.027

Hoque, M., Sarkar, P., & Ahmed, J. (2022). Preparation and characterization of tamarind kernel powder/ZnO nanoparticle-based food packaging films. Industrial Crops and Products, 178, Article 114670. https://doi.org/10.1016/j.indcrop.2022.114670

Kozioł, A., Cybulska, J., Pieczywek, P. M., & Zdunek, A. (2015). Evaluation of structure and assembly of xyloglucan from tamarind seed (Tamarindus indica L.) with Atomic Force Microscopy. Food Biophysics, 10, 396-402. https://doi.org 10.1007/s11483-015-9395-2

Lian, H., Peng, Y., Shi, J., & Wang, Q. (2019). Effect of emulsifier hydrophilic-lipophilic balance (HLB) on the release of thyme essential oil from chitosan films. Food Hydrocolloids, 97, Article 105213. https://doi.org/10.1016/j.foodhyd.2019.105213

Lin, L., Mei, C., Shi, C., Li, C., Abdel-Samie, M. A., & Cui, H. (2023). Preparation and characterization of gelatin active packaging film loaded with eugenol nanoparticles and its application in chicken preservation. Food Bioscience, 53, 102778. https://doi.org/10.1016/j.fbio.2023.102778

Malviya, R., Sundram, S., Fuloria, S., Subramaniyan, V., Sathasivam, K. V., Azad, A. K., ... & Fuloria, N. K. (2021). Evaluation and characterization of tamarind gum polysaccharide: The biopolymer. Polymers, 13(18), 3023. https://doi.org/10.3390/polym13183023

Martins, J. T., Cerqueira, M. A., & Vicente, A. A. (2012). In fluence of α-tocopherol on physicochemical properties of chitosan-based films. Food Hydrocolloid, 27(1), 220-227. https://doi.org/10.1016/j.foodh yd.2011.06.011

Mikkonen, K. S., Rita, H., Helén, H., Talja, R. A., Hyvönen, L., & Tenkanen, M. (2007). Effect of polysaccharide structure on mechanical and thermal properties of galactomannan- based films. Biomacromolecules, 8(10), 3198-3205. https://doi.org/10.1021/bm700538c.

Mishra, A., & Malhotra, A. V. (2009). Tamarind xyloglucan: A polysaccharide with versatile application potential. Journal of Materials Chemistry, 19(45), 8528–8536. https://doi.org/10.1016/j.carbpol.2011.11.024

Nagar, C. K., Dash, S. K., & Rayaguru, K. (2022). Tamarind seed: Composition, applications, and value addition: A comprehensive review. Journal of Food Processing and Preservation, 46(10), Article e16872. https://doi.org/10.1111/jfpp.16872

Pérez, L.M., Piccirilli, G.N., Delorenzi, N.J., & Verdini, R.A. (2016). Effect of different combinations of glycerol and/or trehalose on physical and structural properties of whey protein concentrate-based edible films. Food Hydrocolloid, 56, 352-359. https://doi.org/10.1016/j.foodhyd.2015.12.037

Premalatha, M., Mathavan, T., Selvasekarapandian, S., Monisha, S., Vinoth Pandi, D., & Selvalakshmi, S. (2016). Investigations on proton conducting biopolymer membranes based on tamarind seed polysaccharide incorporated with ammonium thiocyanate. Journal of Non-Crystalline Solids, 453, 131-140. https://doi.org/10.1016/j.jnoncrysol.2016.10.008

Qureshi, D., Behera, K. P., Mohanty, D., Mahapatra, S. K., Verma, S., Sukyai, P., ... & Pal, K. (2021). Synthesis of novel poly (vinyl alcohol)/tamarind gum/bentonite-based composite films for drug delivery applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 613, 126043. https://doi.org/10.1016/j.colsurfa.2020.126043

Rao, M. S., Kanatt, S. R., Chawla, S. P., & Sharma, A. (2010). Chitosan and guar gum composite films: Preparation, physical, mechanical and antimicrobial properties. Carbohydrate Polymers, 82(4), 1243-1247. https://doi.org/10.1016/j.carbpol.2010.06.058

Saberi, B., Chockchaisawasdee, S., Golding, J. B., Scarlett, C. J., & Stathopoulos, C. E. (2017). Physical and mechanical properties of a new edible film made of pea starch and guar gum as affected by glycols, sugars and polyols. International Journal of Biological Macromolecules, 104, 345-359. https://doi.org/10.1016/j.ijbiomac.2017.06.051

Sudharsan, K., Mohan, C. C., Babu, P. A. S., Archana, G., Sabina, K., Sivarajan, M., & Sukumar, M. (2016). Production and characterization of cellulose reinforced starch (CRT) films. International Journal of Biological Macromolecules, 83, 385-395. https://doi.org/10.1016/j.ijbiomac.2015.11.037

Suppakul, P., Jutakorn, K., & Bangchokedee, Y. (2010). Efficacy of cellulose-based coating on enhancing the shelf life of fresh eggs. Journal of Food Engineering, 98, 207–213. https://doi.org/10.1016/j.jfoodeng.2009.12.027

Suresh, S. N., Puspharaj, C., & Subramani, R. (2022). Development of Almond gum/alginate composites to enhance the shelf-life of post-harvest Solanum Lycopersicum L. Food Hydrocolloids for Health, 2, Article 100087. https://doi.org/10.1016/j.fhfh.2022.100087

Suwanamornlert, P. (2020). Application of tamarind kernel polysaccharide-soybean oil emulsion coating to preserve the internal quality and extend shelf-life of fresh eggs. Journal of Current Science and Technology, 10(2), 99-107. https://doi.org/10.14456/jcst.2020.10

Thivya, P., Bhosale, Y. L., Anandakumar, S., Hema, V., & Sinija, V. R. (2021). Exploring the effective utilization of shallot stalk waste and tamarind seed for packaging film preparation. Waste and Biomass Valorization, 12, 5579-5794. https://doi.org/10.1007/s12649-021-01402-4

Zhang, R., Zhai, X., Wang, W., & Hou, H. (2022). Preparation and evaluation of agar/maltodextrin-beeswax emulsion films with various hydrophilic-lipophilic balance emulsifiers. Food Chemistry, 384, Article 132541. https://doi.org/10.1016/j.foodchem.2022.132541




How to Cite

Suwanamornlert, P., Taksima, T., & Thanyacharoen-anukul, P. (2023). Effects of Plasticizers on Characterization of Biodegradable Film Based on Tamarind Kernel Polysaccharide. Journal of Current Science and Technology, 13(3), 630–641. https://doi.org/10.59796/jcst.V13N3.2023.814



Research Article