Preparation and Characterization of Low- Emissivity AlN/Ag/AlN Films by Magnetron Cosputtering Method


  • Wuttichai Phae-ngam Physics Program, Faculty of Science and Technology, Phranakhon Rajabhat University, Bangkok 10220, Thailand
  • Surachart Kamoldilok Department of Physics, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand.
  • Tanattha Rattana Department of Physics, Faculty of Science, Burapha University, Chonburi 20130, Thailand
  • Tossaporn Lertvanithphol Opto-Electrochemical Sensing Research Team, National Electronics and Computer Technology Center, Pathum Thani 12120, Thailand
  • Araya Mungchamnankit Department of Physics, Faculty of Science, Rangsit University, Pathum Thani 12000, Thailand



AlN/Ag/AlN thin film, low-emissivity glass, magnetron co-sputtering, multilayer films, infrared protection, solar transmittance


AlN and Ag thin films were deposited independently on the Si(100) wafers and glass slides by sputtering technique at various times to find the optimum deposition times for coating AlN and Ag films layers. The results obtained from glazing-incident X-ray diffraction (GIXRD), field-emission scanning electron microscopy (FE-SEM), and transmittance measurements showed that the optimum deposition time for coating AlN and Ag film layers were 40 min and 15 s corresponding to the film thickness of 46.7 and 19.6 nm, respectively. The optimum deposition times were used for coating AlN and Ag films in the multilayer AlN/Ag/AlN film stack. Then, the multilayer AlN/Ag/AlN film stack was deposited on the glass slide for transmittance measurement and a test glass plate with a size of 10 cm x 10 cm for infrared protection testing. The average solar transmittances in the visible range (gif.latex?\lambda = 380-780 nm) and in the near infrared range ( gif.latex?\lambda= 780-2,000 nm) were found to be 48.05 and 15.17%, respectively which are comparable with those of a commercial glass.


ASTM. (2020). Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37 Tilted Surface G173-03(2020). Retrieved December 11, 2020.

Addonizio, M. L., Ferrara, M., Castaldo, A. & Antonaia, A. (2021). Air-stable low-emissive AlN-Ag based coatings for energy-efficient retrofitting of existing windows. Energy and Buildings, 250, Article 111259. 10.1016/j.enbuild.2021.111259

AGC Glass Company North America. AGC Commercial Low-E Glass Range. Retrieved December 12, 2021.

Akepati, S. R., Loka, C., Yu, C. H. T. & Lee, K. S. (2013). Effect of TaNx on electrical and optical properties of annealed TaNx/Ag/TaNx films. Surface and Interface Analysis, 45(9), 1419-1423.

Chantharangsi, C., Denchitcharoen, S., Chaiyakun, S. & Limsuwan, P. (2015). Structures, morphologies, and chemical states of sputter-deposited CrZrN thin films with various Zr contents. Thin Solid Films, 589(31), 613–619.

Cheng, H., Sunb, Y., Zhang, J. X., Zhang, Y. B., Yuan, S. & Hing, P. (2003). AlN films deposited under various nitrogen concentrations by RF reactive sputtering. Journal of Crystal Growth, 254(1-2), 46–54.

Chiba, K. & Kaminishi, S. (2008). Fabrication and Optical Properties of Low-Emissivity Coatings of AlSiN and AgCuNd-Alloy Multilayer Films on Glass. Japanese Journal of Applied Physics, 47(1), 240–243.

Chokboribal, J., Vanidshow, W., Yuwasonth, W., Chananonnawathorn, C., Waiwijit, U., Hincheeranun, W., …... & Phae-ngam, W. (2021). Annealed plasmonic Ag nanoparticle films for surface enhanced fluorescence substrate. Materials Today, 47(12), 3492-3495.

Dhar, A. & Alford, T. L. (2013). High quality transparent TiO2/Ag/TiO2 composite electrode films deposited on flexible substrate at room temperature by sputtering. APL Mater, 1(1), Article 12102.

Ferrara, M., Castaldo, A., Esposito, S., D'Angelo, A., Guglielmo, A. & Antonaia, A. (2016). AlN–Ag based low-emission sputtered coatings for high visible transmittance window. Surface and Coatings Technology, 295, 2–7. 10.1016/j.surfcoat.2015.12.015

Huang, J. M., Hao, X. P., Wu, M. & Hu, G. T. (2011). Effect of Sputtering Parameters on the Property of TaNxAg/TaNx Low-Emissivity Film. Advanced Materials Research, 287-290, 2261–2266. https://doi:10.4028/

Huang, J., Xiang, C., Li, S., Zhao, X. & He, G. (2014). Preparation, characterization and performance of Ti1-x AlxN/Ag/Ti1-xAlxN low-emissivity films. Applied Surface Science, 293, 259-264.

Jang, J. W., Kim, J. S., Jee, H., Hong, S. H. & Seo, H. W. (2020). Composite titanium oxide nanocolumnar thin films for low-emissivity coating. Current Applied Physics, 20(6), 817–821. 10.1016/j.cap.2020.03.022

Kim, J. H., Kim, D. H., Kim, S. K., Bae, D., Yo, Y. Z. & Seong, T. Y. (2016). Control of refractive index by annealingto achieve high figure of merit for TiO2/Ag/TiO2 multilayer films. Ceramics International, 42(12), 14071-14076. 10.1016/j.ceramint.2016.06.015

Kulczyk-Malecka, J., Kelly, P. J., West, G., Clarke, G. C. B., Ridealgh, J. A., Almtoft, K. P., ... & Barber, Z. H. (2014). Investigation of silver diffusion in TiO2/Ag/TiO2 coatings. Acta Materialia, 66, 396–404. 10.1016/j.actamat.2013.11.030

Kumar, A., Chan, H. L., Weimer, J. J. & Sanderson, L. (1997). Structural characterization of pulsed laser-deposited AlN thin films on semiconductor substrates. Thin Solid Films, 308-309, 406-409.

Loka, C., Yu, H. T. & Lee, K. S. (2014). The preparation of thermally stable TiNx/Ag(Mo)/TiNx ultrathin films by magnetron sputtering. Thin Solid Films, 570, 178-182. 10.1016/j.tsf.2014.05.029

Manova, D., Dimitrova, V., Fukarek, W. & Karpuzov, D. (1998). Investigation of d.c.-reactive magnetron-sputtered AlN thin films by electron microprobe analysis, X-ray photoelectron spectroscopy and polarized infra-red reflection. Surface and Coatings Technology, 106(2-3), 205–208.

Mungchamnankit, A., Eiamchai, P., Chananonnawathorn, C., Limwichean, S., Horprathum, M., Thongmee A. & Sukplang, P. (2014). Effect of Annealing Temperature on ZnO Nanorods Prepared by Hydrothermal Process. Advanced Materials Research, 979, 204-207.

Sukkasem, C., Sasivimolkul, S., Suvarnaphaet, P., & Pechprasarn, S. (2021, May). Analysis of optical detection of ultrasound using PDMS thin film. Journal of Current Science and Technology, 11(2), 197-207.

Tsai, D. C., Chang, Z. C., Kuo, B. H., Chen, E. C., Huang, Y. L., Hsieh, T. J. & Shieu, F. S. (2019). Thermal stability and optical properties of low emissivity multilayer coatings for energy-saving applications. Ceramics International, 46(6), 7991-7997.

Zhang, C., Zhao, J., Wu, H. & Yu, S. (2020). The enhancement of thermal endurance in doped low emissive ZnO/Ag/ZnO multilayer thin film. Journal of Alloys and Compounds, 832, 154983. 10.1016/j.jallcom.2020.154983

Zhu, K. & Yang, K., (2022). Low‑temperature fabrication of high‑performance AlN/Ag/AlN thin films for transparent electrode applications. Applied Physics A, 128(12), Article 1038. 10.1007/s00339-022-06195-4




How to Cite

Phae-ngam, W., Kamoldilok, S., Rattana, T., Lertvanithphol, T., & Mungchamnankit, A. (2023). Preparation and Characterization of Low- Emissivity AlN/Ag/AlN Films by Magnetron Cosputtering Method. Journal of Current Science and Technology, 13(3), 533–541.



Research Article