The change of crystal field of Gd3+ in natural zircon with heat treatment in oxidizing and reducing atmospheres monitored by ESR spectroscopy


  • Araya Mungchamnankit Department of Physics, Faculty of Science, Rangsit University, Patumthani 12000, Thailand
  • Suwimon Nualpralaksana Department of Chemistry, Faculty of Science and Technology, Nakhon Pathom Rajabhat University, Nakhon Pathom 73000, Thailand & Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University, Nakhon Pathom 73000, Thailand


crystal field, ESR spectroscopy, ESR spectra, gadolinium ion, Gd3 , natural zircon


Color appearance in gemstones occurred as the consequences of several factors such as impurity ions, color center or inclusions within gemstones.  Variety colors of zircon found in nature, but there is no research showing the clear causes of the color appearance.  The main objective of this research is to involving the ESR spectra of the gadolinium ion (Gd3+) impurity ions of in natural zircon crystal to the color of zircon.  The Zeeman interaction of impurity ions effect produces the crystal field and weak hyperfine interaction.  All of the interactions were calculated by a computer program.  In addition, the symmetry of impurity ion site can be seen with the relation between the resonance magnetic field positions and the applied magnetic field directions in the ESR spectra.  The variation in the crystal field parameters of heat-treated zircon at different atmospheres was found related to the change in the color of zircon.


Abraham, M. M., Clark, G. W., Finch, C. B., Reynolds R. W., & Zeldes, H. (1969). Ground-state splitting of trivalent Gd and Cm in ZrSiO4, HfSiO4 and ThSiO4 by ESR. The Journal of Chemical Physics, 50(5), 2057-2062. DOI: 10.1063/1.1671333

Achiwawanich, S., Brack, N., James, B. D., & Liesegang, J. (2006). Surface analysis of heat-treated Mong Hsu rubies. Applied Surface Science, 252(24), 8646-8650. DOI: 10.1016/j.apsusc.2005.12.037

de Biasi, R. S. & Grillo, M. L. N. (2015). Electron magnetic resonance of diluted solid solutions of Gd3+ in BaTiO. Materials Research, 18(2), 288-291. DOI:

Fuks, H., Typeka, J., Berkowski, M., Głowacki, M., & Tomaszewicz, E. (2018). EPR study of RE3+ (RE = Nd, Gd, Dy) doped CdMoO4 single crystal. Materials Chemistry and Physics, 221, 156-167. DOI: 10.1016/j.matchemphys.2018.09.049

Grimes, C. B., Wooden, J. L., Cheadle, M. J., & John, B. E. (2015). “Fingerprinting” tectono-magmatic provenance using trace elements in igneous zircon. Contributions to Mineralogy and Petrology, 170, 46-72. DOI: 10.1007/s00410-015-1199-3

Kittiauchawal, T., Mungchamnankit, A., Sujinnapram, S., Kaewkhao, J. & Limsuwan, P. (2012). The effect of heat treatment on crystal structure in zircon monitored by ESR and XRD. Procedia Engineering, 32, 706-713. DOI: 10.1016/j.proeng.2012.02.001

Mungchamnankit, A., Limsuwan, P., & Winotai, P. (2006). Electron spin resonance study of Gd3+ in zircon. The Proceedings of International Conference on Applied Science (ICAS-2006), 1, 63-68.

Mungchamnankit, A., & Limsuwan, P. (2007). ESR study of spin hamiltonian and crystal field energy levels of gd3+ in natural zircon. International Review of Physics, 1(5), 340-344.

Mungchamnanakit, A., Limsuwan, S., Winotai, P., & Meejoo, S. (2007). LA-ICP-MS study of impurity ion concentrations in zircon, Kasetsart J., 41, 267-271.

Mungchamnankit, A., Limsuwan, P., Thongcham, K., & Meejoo, S. (2008). The electron spin resonance study of Gd 3+ in natural zircon. Journal of Magnetism and Magnetic Materials, 320(3), 479-482. DOI: 10.1016/j.jmmm.2007.07.014

Mungchamnankit, A., Ruengsri, S., Angnanon, A., Srisittipokakun, N., & Kaewkhao, J. (2013). The effect of heat treatment and CO2 atmosphere on color changing in zircon. Proceedings of 4th International Science, Social Science, Engineering and Energy Conference. (ISEE2012), 564-569. Golden Beach Cha-Am Hotel, Petchburi, Thailand, December 11-14, 2012.

Nikolaev, A. I., Drogobuzhskaya, S. V., Bayanova, T. B., Kaulina, T. V., Lyalina, L. M., Novikov, A. I., & Steshenko, E. N. (2016). REE distribution in zircon from reference rocks of the Arctic region: evidence from study by the LA-ICP-MS method. Doklady Earth Sciences, 470(2), 1037-1041. DOI: 10.1134/S1028334X16100044

Rappaz, M., Boatner, L. A., & Abraham, M. M. (1980). EPR investigations of Gd3+ in single crystals and powders of the zircon–structure orthophosphates YPO4, ScPO4, and LuPO4. The Journal of Chemical Physics, 73(3), 1095-1103.

Reynolds, R .W., Boatner, L. A., Finch, C. B., Chatelain A., & Abraham, M. M. (1972). EPR investigations of Er3+, Yb3+, and Gd3+ in zircon structure silicates. Journal of Chemical Physics, 56(11), 5607-5625. DOI: 10.1063/1.1677080

Tennant, W. C., Claridge, R. F. C., Walsby, C. J., & Lees, N. S. (2004). Point defects in crystalline zircon (zirconium silicate), ZrSiO4: electron paramagnetic resonance studies. Physics and Chemistry of Minerals, 31(4), 203-223. DOI 10.1007/s00269-003-0376-5

Winotai, P., Saiseng, S., & Sudyoadsuk, T. (2001). Optimization of heat treatments of African green sapphires. Modern Physics Letters B, 15(20), 873-882.




How to Cite

Araya Mungchamnankit, & Suwimon Nualpralaksana. (2023). The change of crystal field of Gd3+ in natural zircon with heat treatment in oxidizing and reducing atmospheres monitored by ESR spectroscopy . Journal of Current Science and Technology, 9(2), 141–147. Retrieved from



Research Article