Numerical simulation of gas-solid flow in a cement precalciner using adaptive mesh refinement
Keywords:
AMR, cement, CFD, DPM, numerical simulation, precalcinerAbstract
A burning process is very critical in the clinker production of cement industry. The process consists of precalcination in precalciner and combustion in the combustion chamber. During precalcination, the amount of 97% calcium carbonate (CaCO3) chemically decomposes into calcium oxide (CaO) and carbon dioxide (CO2), resulting in lower energy consumption at the precalciner. Therefore, this research focuses on numerical simulation of gas-solid flow in a cement precalciner using adaptive mesh refinement. The geometrical models of both gas and solid phases were carried out for subsequent mathematical analysis. The Eulerian scheme with a turbulent model and Lagrangian scheme with discrete phase model (DPM) were then applied for gas and solid phases, respectively, through the computational fluid dynamics (CFD), using the adaptive mesh refinement (AMR). Various parameters, such as temperature, streamline, velocity vector and trajectory of pulverised coal/raw meal were numerically obtained. In the gas phase, the temperature profiles were found, the streamlines of tertiary air, raw meal air, and kiln gas were shown, as well as the velocity vectors of various layers were illustrated. In the solid phase, the trajectories of pulverised coal, raw meal, and a mixture of pulverised coal/raw meal were presented. In the gas-solid phase, both the streamline and trajectory of a mixture of air, pulverised coal, and raw meal were given. With a measurement access limitation in the cement plant, the model validation can be mainly carried out through temperature measurement in the gas phase which shows a good correlation within 6% discrepancy. Consequently, the developed AMR model, in this research, can be further used to improve precalcination efficiency and precalciner design.
References
Assawamartbunlue, K., Surawattanawan, P., & Luknongbu, W. (2019). Specific energy consumption of cement in Thailand. Energy Procedia, 156, 212-216. DOI: 10.1016/j.egypro.2018.11.130
Borawski, K. (2009). Numerical investigation of gas-solid flow in the calciner. A thesis for the degree of Master of Engineering in Thermal Energy and Process Engineering. AALBORG University, Copenhagen, Denmark.
Chen, X., Xie, J., Mei, S., & Shen, S. (2016). Numerical simulation of gas-solid flow and pulverized coal combustion in a swirl chamber precalciner. Proceedings of the 2016 6th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2016). DOI: 10.2991/icadme-16.2016.47
Chen, Z. B., Ye, F., & Gao, C. (2011). Numerical simulation of NSP cement NOx formation and control technology. Advanced Materials Research, 356-360, 1605-1608. DOI: 10.4028/www.scientific.net/amr.356-360.1605
Chinyama, M. P., Lockwood, F. C., Yousif, S. Y., & Kandamby, N. (2008). Modelling of calcium carbonate decomposition in cement plant precalciners. Journal of the Energy Institute, 81(1), 19-24. DOI: 10.1179/174602208x269355.
Dou, H., Chen, Z., & Huang, J. (2009, February). Numerical study of the coupled flow field in a double-spray calciner. 2009 International Conference on Computer Modeling and Simulation. Macau, China. DOI: 10.1109/iccms.2009.45
Fidaros, D., Baxevanou, C., Dritselis, C., & Vlachos, N. (2007). Numerical modelling of flow and transport processes in a calciner for cement production. Powder Technology, 171(2), 81-95. DOI: 10.1016/j.powtec.2006.09.011
Ghizdavet, Z., Volceanov, A., & Semenescu, A. (2008). CFD Simulations of gases flow in calciners. Revista de Chimie -Bucharest- Original Edition, 59(5), 511-514. Retrieved May 1, 2019, from http//www.researchgate.net/publication/288011426_CFD_Simulations_of_gases_flow_in_calciners
Giddings, D., Eastwick, C. N., Pickering, S. J., & Simmons, K. (2000). Computational fluid dynamics applied to a cement precalciner. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 214(3), 269-280. DOI: 10.1243/0957650001538353
Heng, S. Tao. (1980). Some interesting features of precalcining system. World cement technology, 11(7), 353-366. Retrieved May 1, 2019, from http//www.hstao.com/Cement/English/Interesting%20Precalcining%20Systems.pdf
Holderbank Cement Seminar. (2000). Materials technology I – Raw materials supply for cement and aggregate industry. Retrieved from https://archive.org/stream/HolderbankCementEngineeringBook/Pg_20602101_precalciningSystems#page/n5/mode/2up
Hu, Z., Lu, J., Huang, L., & Wang, S. (2006). Numerical simulation study on gas–solid two-phase flow in pre-calciner. Communications in Nonlinear Science and Numerical Simulation, 11(3), 440-451. DOI: 10.1016/j.cnsns.2004.07.004
Huang, L., Lu, J., Hu, Z., & Wang, S. (2006). Numerical simulation and optimization of NO emissions in a precalciner. Energy & Fuels, 20(1), 164-171.DOI: 10.1021/ef0502857
Huang, L., Lu, J., Xia, F., Li, W., & Ren, H. (2006). 3-D mathematical modeling of an in-line swirl-spray precalciner. Chemical Engineering and Processing: Process Intensification, 45(3), 204-213. DOI: 10.1016/j.cep.2005.09.001
Huanpeng, L., Wentie, L., Jianxiang, Z., Ding, J., Xiujian, Z., & Huilin, L. (2004). Numerical study of gas?solid flow in a precalciner using kinetic theory of granular flow. Chemical Engineering Journal, 102(2), 151-160. DOI: 10.1016/s1385-8947(04)00129-9
Jiamei, W., Guoquan, X., & Baoguo, M. (2006). Numerical simulation of the gas-solid two-phase flows in a precalciner. Journal of Wuhan University of Technology-Mater. Sci. Ed., 21(4), 177-179. DOI: 10.1007/bf02841233
Jianxiang, Z., Tingzhi, Y., & Jing, Y. (2012). Numerical simulation of gas and solid flow behavior in the pre-calciner with large eddy simulation approach. Energy Procedia, 17(Part B), 1535-1541. DOI:10.1016/j.egypro.2012.02.278
Klotz, B. (1997, April). New developments in precalciners and preheaters. 1997 IEEE/PCA Cement Industry Technical Conference. XXXIX Conference Record (Cat. No.97CH36076). Hershey, PA, USA. DOI: 10.1109/citcon.1997.599349
Kolyfetis, E., & Vayenas, C. G. (1988). Mathematical modelling of separate line precalciners (SLC). ZKG International Research Manufacture Application, 11, 559-563. Retrieved June 3, 2019, from https://www.researchgate.net/publication/289526602_Mathematical_Modelling_of_separate_line_precalciners_SLC
Li, X., Ba, Q., Egbert, S., & Cheng, L. (2019). Measurements and modeling of fluid flow and thermal processes in an industrial precalciner. Frontiers in Heat and Mass Transfer (FHMT), 12. DOI: 10.5098/hmt.12.20
Li, X., Ma, B., & Hu, Z. (2008). Computational modeling of aerodynamic characteristics in sprayed and spiraled precalciner. Communications in Nonlinear Science and Numerical Simulation, 13(6), 1205-1211. DOI: 10.1016/j.cnsns.2006.10.002
Luo, H. (2011). Modeling the gas-solid flow in calcining furnace. The Journal of Computational Multiphase Flows, 3(1), 1-12. DOI: 10.1260/1757-482x.3.1.1
Mei, S., Xie, J., Chen, X., & He, F. (2016). Moving characteristics of coal and RDF in a swirl-type precalciner by numerical simulation. Proceedings of the 2016 6th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2016). DOI: 10.2991/icadme-16.2016.49
Mei, S., Xie, J., Chen, X., He, F., Yang, H., & Jin, M. (2017). Numerical simulation of the complex thermal processes in a vortexing precalciner. Applied Thermal Engineering, 125, 652-661. DOI: 10.1016/j.applthermaleng.2017.07.041
Mei, S. X., Xie, J. L., He, F., & Jin, M. F. (2012). Numerical simulations of combustion and decomposition processes in precalciner with two types of locations of jetting coal pipes. Applied Mechanics and Materials, 235, 428-433. DOI: 10.4028/www.scientific.net/amm.235.428
Mei, S. X., Xie, J. L., He, F., & Jin, M. F. (2013). Numerical simulations of combustion and decomposition processes in precalciner with two different heights of raw meal inlets. Applied Mechanics and Materials, 268-270, 477-482. DOI: 10.4028/www.scientific.net/amm.268-270.477
Michaelides, E. E., Crowe, C. T., & Schwarzkopf, J. D. (2017). Multiphase flow handbook. Updated 2nd Edition. Boca Raton: CRC Press/Taylor & Francis Group.
Mikulčić, H., Berg, E. V., Vujanović, M., & Duić, N. (2014). Numerical study of co-firing pulverized coal and biomass inside a cement calciner. Waste Management & Research, 32(7), 661-669. DOI: 10.1177/0734242x14538309
Mikulčić, H., Berg, E. V., Vujanović, M., Priesching, P., Perković, L., Tatschl, R., & Duić, N. (2012). Numerical modelling of calcination reaction mechanism for cement production. Chemical Engineering Science, 69(1), 607-615. DOI: 10.1016/j.ces.2011.11.024
Mikulčić, H., Berg, E. V., Vujanović, M., Priesching, P., Tatschl, R., & Duić, N. (2012). CFD analysis of a cement calciner for a cleaner cement production. Chemical Engineering Transactions, 29, 1513-1518. Retrieved June 01, 2019, from https://core.ac.uk/download/pdf/34008106.pdf
Mikulčić, H., Vujanović, M., Fidaros, D. K., Priesching, P., Minić, I., Tatschl, R., . . . Stefanović, G. (2012). The application of CFD modelling to support the reduction of CO2 emissions in cement industry. Energy, 45(1), 464-473. DOI: 10.1016/j.energy.2012.04.030
Morsi, S. A., & Alexander, A. J. (1972). An investigation of particle trajectories in two-phase flow systems. Journal of Fluid Mechanics, 55(02), 193-208. DOI: 10.1017/s0022112072001806
Mtui, P. (2013). CFD modeling of devolatilization and combustion of shredded tires and pine wood in rotary cement kilns. American Journal of Energy Engineering, 1(5), 51-55. DOI: 10.11648/j.ajee.20130105.11
Oss, H. G., & Padovani, A. C. (2003). Cement manufacture and the environment part II: Environmental challenges and opportunities. Journal of Industrial Ecology, 7(1), 93-126. DOI: 10.1162/108819803766729212
Rahman, A., Rasul, M., Khan, M., & Sharma, S. (2013). Impact of alternative fuels on the cement manufacturing plant performance: An overview. Procedia Engineering, 56, 393-400. DOI: 10.1016/j.proeng.2013.03.138
Saidur, R., Hossain, M., Islam, M., Fayaz, H., & Mohammed, H. (2011). A review on kiln system modeling. Renewable and Sustainable Energy Reviews, 15(5), 2487-2500. DOI: 10.1016/j.rser.2011.01.020
Shih, T., Liou, W. W., Shabbir, A., Yang, Z., & Zhu, J. (1995). A new k-ϵ eddy viscosity model for high reynolds number turbulent flows. Computers & Fluids, 24(3), 227-238. DOI: 10.1016/0045-7930(94)00032-t
Siwei, C., Zuobing, C., Haijian, D., Jianxin, P., Jiquan, H., & Yawei, C. (2005). The numerical simulation of the flow field in a cold model of five-stage cyclone preheater and precalciner system. Journal of Wuhan University of Technology-Mater. Sci. Ed., 20(2), 99-101. DOI: 10.1007/bf02838501
The European Cement Association. (2017). Activity report 2017. CEMBUREAU, Rue d’Arlon 55 – BE-1040 Brussels, Belgium. Retrieved from https://cembureau.eu/media/1716/activity-report-2017.pdf
Wikipedia. (n.d.). Cement kiln. Retrieved 2019, May 03 from https://en.wikipedia.org/wiki/Cement_kiln
Xie, J., & Mei, S, (2007). Numerical simulation of gas-solid flow in SLC-S precalciner by adding a raw meal inlet. Kuei Suan Jen Hsueh Pao/ Journal of the Chinese Ceramic Society, 35(10), 1382-1386. Retrieved June 3, 2019, from https://www.researchgate.net/publication/289290304_Numerical_simulation_of_gas-solid_flow_in_SLC-S_precalciner_by_adding_a_raw_meal_inlet
Xie, J. L., & Mei, S. X. (2008). Numerical simulation of gas-solid flow in a precalciner of cement industry. Materials Science Forum, 575-578, 1234-1239. DOI: 10.4028/www.scientific.net/msf.575-578.1234
Xing, N. N., & Zhao, W. L. (2011). Numerical simulation of the gas-solid two-phase flow in the cement precalciner based on fluent software. Advanced Materials Research, 255-260, 4232-4236. DOI: 10.4028/www.scientific.net/amr.255-260.4232
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.