In silico and in vitro analysis of the role of cowaxanthone as a histone deacetylase inhibitor and apoptosis inducer in human leukemic T-cells

Authors

  • Sakdiphong Punpai Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
  • Audchara Saenkham Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
  • Kiattawee Choowongkomon Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10903, Thailand
  • Sunit Suksamrarn Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
  • Wanlaya Tanechpongtamb Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand

Keywords:

apoptosis, cowaxanthone, Garcinia fusca Pierre, HDAC, histone deacetylase inhibitor, in silico docking

Abstract

Histone deacetylase inhibitors (HDACis) are a class of anticancer agents that have received great attention.  There are several of these compounds that are already being used in the clinical phase.  However, unwanted side effects to patients are still illustrated.  In this study, we aimed to discover a new type of HDACi from a natural agent.  A natural xanthone, cowaxanthone, isolated from Garcinia fusca Pierre was selected due to its potential effects on cancer cytotoxicity.  In silico docking and in vitro screening activity assays were carried out in order to investigate its role as an HDACi.  The cytotoxic effects were also determined by MTT assay against Jurkat and MDA-MB-231 cells and compared to normal Vero cells.  In addition, the mode of apoptotic death was preliminarily detected.  As a result, cowaxanthone showed an optimum scoring function (docking energy) on all chosen target HDACs in class I (HDACs 2 and 8) and II (HDACs 4 and 7) with binding energies of 105.56, 74.24, 81.00 and 92.88 kcal/mol, respectively.  These scores were high and in a similar range to those of standard HDACis, trichostatin A (TSA) and vorinostat (SAHA).  In addition, cowaxanthone inhibited HDAC activity in vitro in a dose-dependent manner, in which increasing levels of acetylation of histones H3 and H4 were observed.  The anticancer effects of cowaxanthone were clearly indicated in both Jurkat and MDA-MB-231 cells, which less toxic to Vero cells.  Moreover, DNA fragmentation, apoptotic bodies and caspase-3, caspase-8 and caspase-9 activation were indicated.  In conclusion, our results revealed a novel role of cowaxanthone as an HDACi, in which both classes I and II are inhibited.  Apoptotic death was also suggested to be the cowaxanthone cytotoxicity mechanism.

References

Berger, A., Venturelli, S., Kallnischkies, M., Bocker, A., Busch, C., Weiland, T., Noor, S., Leischner, C., Weiss, T. S., Lauer, U. M., Bischoff, S. C., & Bitzer, M. (2013). Kaempferol, a new nutrition-derived pan-inhibitor of human histone deacetylases. Journal of Nutritional Biochemistry, 24(6), 977-985. DOI: 10.1016/j.jnutbio.2012.07.001

Bressi, J. C., Jennings, A. J., Skene, R., Wu, Y., Melkus, R., De Jong, R., O'Connell, S., Grimshaw, C. E., Navre, M., & Gangloff, A. R. (2010). Exploration of the HDAC2 foot pocket: synthesis and SAR of substituted N-(2-aminophenyl)benzamides. Bioorganic & Medicinal Chemistry Letters, 20(10), 3142-3145. DOI: 10.1016/j.bmcl.2010.03.091

Dashwood, R. H., Myzak, M. C., & Ho, E. (2006). Dietary HDAC inhibitors: time to rethink weak ligands in cancer chemoprevention? Carcinogenesis, 27(2), 344-349. DOI: 10.1093/carcin/bgi253

de Ruijter, A. J. M., van Gennip, A. H., Caron, H. N., Kemp, S., & van Kuilenburg, A. B. (2003). Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochemical Jpurnal, 370(3), 737-749. DOI: 10.1042/BJ20021321

Ha, L. D., Hansen, P. E., Vang, O., Duus, F., Pham, H. D., & Nguyen, L. H. (2009). Cytotoxic geranylated xanthones and O-alkylated derivatives of alpha-mangostin. Chemical & Pharmaceutical Bulletin (Tokyo), 57(8), 830-834. DOI: 10.1248/cpb.57.830

Hassan, M., Watari, H., AbuAlmaaty, A., Ohba, Y., & Sakuragi, N. (2014). Apoptosis and molecular targeting therapy in cancer. BioMed Research International, 2014, 150845. DOI: 10.1155/2014/150845

Hull, E. E., Montgomery, M. R., & Leyva, K. J. (2016). HDAC inhibitors as epigenetic regulators of the immune system: impacts on cancer therapy and inflammatory diseases. BioMed Research International, 2016, ID 8797206. DOI: 10.1155/2016/8797206

Jan, R., & Chaudhry, G. E. (2019). Understanding apoptosis and apoptotic pathways targeted cancer therapeutics. Advanced Pharmaceutical Bulletin, 9(2), 205-218. DOI: 10.15171/apb.2019.024

Krajarng, A., Nakamura, Y., Suksamrarn, S., & Watanapokasin, R. (2011). Alpha-mangostin induces apoptosis in human chondrosarcoma cells through downregulation of ERK/JNK and Akt signaling pathway. Journal of Agricultural and Food Chemistry, 59(10), 5746-5754. DOI: 10.1021/jf200620n

Li, Y., & Seto, E. (2016). HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harbor Perspectives in Medicine, 6(10), a026831. DOI: 10.1101/cshperspect.a026831

Ma, J., Guo, X., Zhang, S., Liu, H., Lu, J., Dong, Z., Liu, K., & Ming, L. (2015). Trichostatin A, a histone deacetylase inhibitor, suppresses proliferation and promotes apoptosis of esophageal squamous cell lines. Molecular Medicine Reports, 11(6), 4525-4531. DOI:10.3892/mmr.2015.3268

Matsumoto, K., Akao, Y., Yi, H., Ohguchi, K., Ito, T., Tanaka, T., Kobayashi, E., Iinumac, M., & Nozawa, Y. (2004). Preferential target is mitochondria in alpha-mangostin-induced apoptosis in human leukemia HL60 cells. Bioorganic & Medicinal Chemistry, 12(22), 5799-5806. DOI: 10.1016/j.bmc.2004.08.034

Negi, J. S., Bisht, V. K., Singh, P., Rawat, M. S. M., & Joshi, G. P. (2013). Naturally occurring xanthones: chemistry and biology. Journal of Applied Chemistry, 2013, 621459. DOI: 10.1155/2013/621459

Nguyen, N. K., Truong, X. A., Bui, T. Q., Bui, D. N., Nguyen, H. X., Tran, P. T., & Nguyen, L. D. (2017). Alpha-glucosidase inhibitory xanthones from the roots of Garcinia fusca. Chemistry & Biodiversity, 14(10). DOI: 10.1002/cbdv.201700232

Nontakham, J., Charoenram, N., Upamai, W., Taweechotipatr, M., & Suksamrarn, S. (2014). Anti-helicobacter pylori xanthones of Garcinia fusca. Archives of Pharmacal Research volume, 37(8), 972-977. DOI: 10.1007/s12272-013-0266-4

Phiel, C. J., Zhang, F., Huang, E. Y., Guenther, M. G., Lazar, M. A., & Klein, P. S. (2001). Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. The Journal of Biological Chemistry, 276(39), 36734-36741. DOI: 10.1074/jbc.M101287200

Rajan, A., Shi, H., & Xue, B. (2018). Class I and II histone deacetylase inhibitors differentially regulate thermogenic gene expression in brown adipocytes. Scientific Reports, 8(1), 13072. DOI: 10.1038/s41598-018-31560-w

Schuetz, A., Min, J., Allali-Hassani, A., Schapira, M., Shuen, M., Loppnau, P., Mazitschek, R., Kwiatkowski, N. P., Lewis, T. A., Maglathin, R. L., McLean, T. H., Bochkarev, A., Plotnikov, A. N., Vedadi, M., & Arrowsmith, C. H. (2008). Human HDAC7 harbors a class IIa histone deacetylase-specific zinc binding motif and cryptic deacetylase activity. Journal of Biological Chemistry, 283(17), 11355-11363. DOI: 10.1074/jbc.M707362200

Senawong, T., Misuna, S., Khaopha, S., Nuchadomrong, S., Sawatsitang, P., Phaosiri, C., Surapaitoon, A., & Sripa, B. (2013). Histone deacetylase (HDAC) inhibitory and antiproliferative activities of phenolic-rich extracts derived from the rhizome of Hydnophytum formicarum Jack.: sinapinic acid acts as HDAC inhibitor. BMC Complementary Medicine and Therapies, 13, 232. DOI: 10.1186/1472-6882-13-232

Singh, A. K., Bishayee, A., & Pandey, A. K. (2018). Targeting histone deacetylases with natural and synthetic agents: An emerging anticancer strategy. Nutrients, 10(6), 731 DOI: 10.3390/nu10060731

Vijayakumar, B., Umamaheswari, A., Puratchikody, A., & Velmurugan, D. (2011). Selection of an improved HDAC8 inhibitor through structure-based drug design. Bioinformation, 7(3), 134-141. DOI: 10.6026/97320630007134

Yelton, C. J., & Ray, S. K. (2018). Histone deacetylase enzymes and selective histone deacetylase inhibitors for antitumor effects and enhancement of antitumor immunity in glioblastoma. Neuroimmunology and neuroinflammation, 5, 46. DOI: 10.20517/2347-8659.2018.58

Yoon, S., & Eom, G. H. (2016). HDAC and HDAC Inhibitor: from cancer to cardiovascular diseases. Chonnam medical journal, 52(1), 1-11. DOI: 10.4068/cmj.2016.52.1.1

Zhang, J., & Zhong, Q. (2014). Histone deacetylase inhibitors and cell death. Cellular and Molecular Life Sciences volume, 71(20), 3885-3901. DOI: 10.1007/s00018-014-1656-6

Downloads

Published

2020-07-20

How to Cite

Punpai, S. ., Saenkham, A. ., Choowongkomon, K. ., Suksamrarn, S., & Tanechpongtamb, W. . (2020). In silico and in vitro analysis of the role of cowaxanthone as a histone deacetylase inhibitor and apoptosis inducer in human leukemic T-cells. Journal of Current Science and Technology, 10(2), 183–194. Retrieved from https://ph04.tci-thaijo.org/index.php/JCST/article/view/395

Issue

Section

Research Article