High-rate Deposition of Crystalline TiHfN Ultra-thin Films by Closed-field Dual-cathode DC Unbalanced Reactive Magnetron Sputtering without External Substrate Heating
DOI:
https://doi.org/10.59796/jcst.V14N3.2024.48Keywords:
TiHfN, sputtering, SERS, crystalline, unheated substraeAbstract
High deposition rate titanium hafnium nitride (TiHfN) ultra-thin film deposition was successfully prepared by closed-field dual-cathode DC unbalanced reactive magnetron sputtering. All prepared films were polycrystalline. The morphology and atomic composition of the TiHfN ultra-thin film were characterized by field-emission scanning electron microscopy (FE-SEM) and energy dispersive spectroscopy (EDS). The columnar structure could be promoted by increasing the deposition time. Lastly, the surface-enhanced Raman scattering (SERS) activity was investigated by Rhodamine 6G (R6G) drop-dried TiHfN ultra-thin film surface. The TiHfN ultra-thin films deposited at 20 s were found to have a high SERS activity, whose detection of R6G molecule at 10-5 M. The result could open preliminary studies on ternary transition metal nitride (TTMN) thin films for the alternative plasmonic sensors as SERS chips.
References
Beliaev, L.Yu., Shkondin, E., Lavrinenko, A.V., & Takayama, O. (2023). Optical properties of plasmonic titanium nitride thin films from ultraviolet to mid-infrared wavelengths deposited by pulsed-DC sputtering, thermal and plasma-enhanced atomic layer deposition. Optical Materials, 143, Article 114237. https://doi.org/10.1016/j.optmat.2023.114237.
Cai, H., You, Q., Hu, Z., Guo, S., Yang, X., Sun, J., ... & Wu, J. (2014). Synthesis of high Al content AlxGa1− xN ternary films by pulsed laser co-ablation of GaAs and Al targets assisted by nitrogen plasma. Journal of Alloys and Compounds, 616, 137-141. https://doi.org/10.1016/j.jallcom.2014.07.090
Chaiyakun, T., Phae-ngam, W., & Prathumsit, J. (2020). High Deposition Rate of Dual-cathode DC Unbalanced Magnetron Sputtering. American Journal of Applied Sciences, 17(1), 231-239. https://doi.org/10.3844/ajassp.2020.231.239
Chang, Y. Y., Chang, B. Y., & Chen, C. S. (2022). Effect of CrN addition on the mechanical and tribological performances of multilayered AlTiN/CrN/ZrN hard coatings. Surface and Coatings Technology, 433, Article 128107. https://doi.org/10.1016/j.surfcoat.2022.128107
Cheng, C., Yan, B., Wong, S. M., Li, X., Zhou, W., Yu, T., ... & Fan, H. J. (2010). Fabrication and SERS performance of silver-nanoparticle-decorated Si/ZnO nanotrees in ordered arrays. ACS Applied Materials & Interfaces, 2(7), 1824-1828. https://doi.org/10.1021/am100270b
Chiu, K. A., Fu, C. W., Fang, Y. S., Do, T. H., Shih, F. H., & Chang, L. (2020). Heteroepitaxial growth and microwave plasma annealing of DC reactive sputtering deposited TiZrN film on Si (100). Surface and Coatings Technology, 394, Article 125873. https://doi.org/10.1016/j.surfcoat.2020.125873
Hasegawa, H., & Suzuki, T. (2004). Effects of second metal contents on microstructure and micro-hardness of ternary nitride films synthesized by cathodic arc method. Surface and Coatings Technology, 188, 234-240. https://doi.org/10.1016/j.surfcoat.2004.08.033
Javed, M. U., Yang, J. W., Kumari, S., Mustaqeem, M., Peng, T. Y., Yang, L. C., ... & Kaun, C. C. (2023). Tailoring the plasmonic properties of complex transition metal nitrides: A theoretical and experimental approach. Applied Surface Science, 641, Article 158486. https://doi.org/10.1016/j.apsusc.2023.158486
Kaya, E., & Ulutan, M. (2022). Tribomechanical and microstructural properties of cathodic arc-deposited ternary nitride coatings. Ceramics International, 48(15), 21305-21316. https://doi.org/10.1016/j.ceramint.2022.04.097
Krajczewski, J., Michałowska, A., Čtvrtlík, R., Nožka, L., Tomáštík, J., Václavek, L., ... & Solarska, R. (2023). The battle for the future of SERS–TiN vs Au thin films with the same morphology. Applied Surface Science, 618, Article 156703. https://doi.org/10.1016/j.apsusc.2023.156703
Lee, Y. E., Lee, J. B., Kim, Y. J., Yang, H. K., Park, J. C., & Kim, H. J. (1996). Microstructural evolution and preferred orientation change of radio‐frequency‐magnetron sputtered ZnO thin films. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 14(3), 1943-1948. https://doi.org/10.1116/1.580365
Maksakova, O. V., Simoẽs, S., Pogrebnjak, A. D., Bondar, O. V., Kravchenko, Y. O., Koltunowicz, T. N., & Shaimardanov, Z. K. (2019). Multilayered ZrN/CrN coatings with enhanced thermal and mechanical properties. Journal of Alloys and Compounds, 776, 679-690. https://doi.org/10.1016/j.jallcom.2018.10.342
Mareus, R., Mastail, C., Anğay, F., Brunetière, N., & Abadias, G. (2020). Study of columnar growth, texture development and wettability of reactively sputter-deposited TiN, ZrN and HfN thin films at glancing angle incidence. Surface and Coatings Technology, 399, Article 126130. https://doi.org/10.1016/j.surfcoat.2020.126130
Phae-ngam, W., Horprathum, M., Chananonnawathorn, C., Lertvanithphol, T., Samransuksamer, B., Songsiriritthigul, P., Nakajima, H. & Chaiyakun,S. (2019). Oblique angle deposition of nanocolumnar TiZrN films via reactive magnetron co-sputtering technique: The influence of the Zr target powers, Current Applied Physics, 19(8), 894-901. https://doi.org/10.1016/j.cap.2019.05.002.
Promjantuk, C., Lertvanithphol, T., Limsuwan, N., Limwichean, S., Wongdamnern, N., Sareein, T., ... & Klamchuen, A. (2023). Spectroscopic study on alternative plasmonic TiN-NRs film prepared by R-HiPIMS with GLAD technique, Radiation Physics and Chemistry, 202, Article 110589. https://doi.org/10.1016/j.radphyschem.2022.110589.
Ran, Y., Lu, H., Zhao, S., Jia, L., Guo, Q., Gao, C., ... & Wang, Z. (2019). Structural and plasmonic properties of TixZr1−xNy ternary nitride thin films. Applied Surface Science, 476, 560-568. https://doi.org/10.1016/j.apsusc.2019.01.108
Sucheewa, N., Wongwiriyapan, W., Klamchuen, A., Obata, M., Fujishige, M., Takeuchi, K., ... & Nukeaw, J. (2022). Tailoring properties of hafnium nitride thin film via reactive gas-timing RF magnetron sputtering for surface enhanced-raman scattering substrates. Crystals, 12(1), 78. https://doi.org/10.3390/cryst12010078
Taga, Y., & Takahasi, R. (1997). Role of kinetic energy of sputtered particles in thin film formation. Surface Science, 386(1-3), 231-240. https://doi.org/10.1016/S0039-6028(97)00313-0
Wang, X., Wu, Z., Wei, Y., Wu, M., Chen, Y., Hu, S., ... & Bu, J. (2022). Synthesis and SERS activity of niobium nitride thin films via reduction nitridation of sol-gel derived films. Optical Materials, 123, Article 111879. https://doi.org/10.1016/j.optmat.2021.111879
Zhang, P., Jin, Y., & Fang, J. (2023). Triangular Au nanoparticle arrays based on flexible materials as temperature-sensitive SERS substrates, Optical Materials, 146, Article 114556. https://doi.org/10.1016/j.optmat.2023.114556
Zhu, S., Xiao, L., & Cortie, M. B. (2016). Surface enhanced Raman spectroscopy on metal nitride thin films. Vibrational Spectroscopy, 85, 146-148. https://doi.org/10.1016/j.vibspec.2016.03.019
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2024 Journal of Current Science and Technology
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.