Removal of heavy metals from textile industries with natural adsorbents

Authors

  • Sujitha Mariappan Department of Biotechnology, Chinmaya International Residential School, Coimbatore, Tamil Nadu 641114, India
  • Reya Issac Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu 641114, India

Keywords:

bio-adsorbents, effluent contamination, heavy metals, industrial pollution, textile dyes

Abstract

Persistent execution of heavy metals contaminating wastewater from textile industries remains a major threat to environmental life. The general studies stated that textile industries polluted about 20-30% freshwater. Such heavy metals are highly reactive even at very low concentrations by accumulating in the food chain. This review highlights the employment of natural adsorbents in removing heavy metals in terms of economic benefits, availability, simple pre-treatment, and pollution-free aspects. This review discusses toxic heavy metals and their potential effects. It highlights the possible natural absorbents like rice husk, banana peel, sugarcane bagasse, absorbents, and Prosopis juliflora bark presented within the state of art methods. The review also enumerated the adsorption capacity of the absorbents like Rice husk forCadmium as 108mg/sugarcane bagasse for a nickel at 123.46 mg/g, and Banana peel on the lead as 54.76 mg/g, which are considered beneficial and effective. The economic utilization of natural adsorption also reveals the importance of the potential application of natural absorbents.

References

Abalaka, S. E., Oyelowo, F. O., Akande, M. G., Tenuche, O. Z., Sani, N. A., Adeyemo, B. T., ... & Ejeh, S. A. (2021). Effects of Moringa oleifera leaves extract, vitamin C, and taurine co-exposures on calcium and metallothionein levels, oxidative stress, and gill histopathological changes in Clarias gariepinus exposed to sub-lethal cadmium. Environmental Science and Pollution Research, 28(37), 52258-52271. DOI: https://doi.org/10.1007/s11356-021-14426-z

Afolabi, F. O., Musonge, P., & Bakare, B. F. (2021). Evaluation of Lead (II) Removal from Wastewater Using Banana Peels: Optimization Study. Polish Journal of Environmental Studies, 30(2). DOI: https://doi.org/10.15244/pjoes/122449

Ahmed, S., Aktar, S., Zaman, S., Jahan, R. A., & Bari, M. L. (2020). Use of natural bio-sorbent in removing dye, heavy metal and antibiotic-resistant bacteria from industrial wastewater. Applied Water Science, 10(5), 1-10. DOI: https://doi.org/10.1007/s13201-020-01200-8

Akter, M., Rahman, F. B. A., Abedin, M. Z., & Kabir, S. F. (2021). Adsorption characteristics of banana peel in the removal of dyes from textile effluent. Textiles, 1(2), 361-375.

Al-Alwan, A. A. K., Al-Bazoon, M., Mussa, F. I., Alalwan, H. A., Shadhar, M. H., Mohammed, M. M., & Mohammed, M. F. (2022). The impact of using rice husk ash as a replacement material in concrete: An experimental study. Journal of King Saud University-Engineering Sciences.

Alalwan, H. A., Abbas, M. N., & Alminshid, A. H. (2020). Uptake of cyanide compounds from aqueous solutions by lemon peel with utilising the residue absorbent as rodenticide. Indian Chemical Engineer, 62(1), 40-51. DOI: https://doi.org/10.1080/00194506.2019.1623091

Alalwan, H. A., Alminshid, A. H., Mohammed, M. M., & Mohammed, M. F. (2022). Reviewing of using Nanomaterials for Wastewater Treatment. Pollution, 8(3), 995-1013.

Ali, A., & Saeed, K. (2015). Decontamination of Cr (VI) and Mn (II) from aqueous media by untreated and chemically treated banana peel: a comparative study. Desalination and Water Treatment, 53(13), 3586-3591. DOI: https://doi.org/10.1080/19443994.2013.876669

Andal, N. M., Charulatha, S., & Gayathri, N. (2016). Biosorption of divalent ion onto treated Prosopis juliflora bark from aqueous solutions: isothermal and statistical analysis. Oriental Journal of Chemistry, 32(2), 1129. DOI: http://dx.doi.org/10.13005/ojc/320238

Ashour, E. A., & Tony, M. A. (2020). Eco-friendly removal of hexavalent chromium from aqueous solution using natural clay mineral: activation and modification effects. SN Applied Sciences, 2(12), 1-13. DOI: https://doi.org/10.1007/s42452-020-03873

Ayangbenro, A. S., & Babalola, O. O. (2017). A new strategy for heavy metal polluted environments: a review of microbial biosorbents. International Journal of Environmental Research and Public Health, 14(1), 94. DOI: https://doi.org/10.3390/ijerph14010094

Azme, N. N. M., Murshed, M. F., Ishak, S. A., & Adnan, M. A. M. (2019, August). Utilization of sugarcane pressmud as a natural absorbent for heavy metal removal in leachate treatment. In AWAM International Conference on Civil Engineering (pp. 1297-1307). Springer, Cham. DOI: https://doi.org/10.1007/978-3-030-32816-0_101

Badessa, T. S., Wakuma, E., & Yimer, A. M. (2020). Bio-sorption for effective removal of chromium (VI) from wastewater using Moringa stenopetala seed powder (MSSP) and banana peel powder (BPP). BMC chemistry, 14(1), 1-12. DOI: https://doi.org/10.1186/s13065-020-00724-z .

da Rocha, H. D., Reis, E. S., Ratkovski, G. P., da Silva, R. J., Gorza, F. D., Pedro, G. C., & de Melo, C. P. (2020). Use of PMMA/(rice husk ash)/polypyrrole membranes for the removal of dyes and heavy metal ions. Journal of the Taiwan Institute of Chemical Engineers, 110, 8-20. DOI: https://doi.org/10.1016/j.jtice.2020.03.003

Dey, S., Haripavan, N., Basha, S., & Babu, G. (2021). Removal of ammonia and nitrates from contaminated water by using solid waste bio-adsorbents. Current Research in Chemical Biology, 1, 100005. DOI: https://doi.org/10.1016/j.crchbi.2021.100005

Dim, P. E., & Termtanun, M. (2021). Treated clay mineral as adsorbent for the removal of heavy metals from aqueous solution. Applied Science and Engineering Progress, 14(3), 511-524. DOI: https://doi.org/10.14416/j.asep.2021.04.002

Es-sahbany, H., El Hachimi, M. L., Hsissou, R., Belfaquir, M., Es-sahbany, K., Nkhili, S., ... & Elyoubi, M. S. (2021). Adsorption of heavy metal (Cadmium) in synthetic wastewater by the natural clay as a potential adsorbent (Tangier-Tetouan-Al Hoceima–Morocco region). Materials Today: Proceedings, 45, 7299-7305. DOI: https://doi.org/10.1016/j.matpr.2020.12.1102

Ezeonuegbu, B. A., Machido, D. A., Whong, C. M., Japhet, W. S., Alexiou, A., Elazab, S. T., ... & Batiha, G. E. S. (2021). Agricultural waste of sugarcane bagasse as efficient adsorbent for lead and nickel removal from untreated wastewater: Biosorption, equilibrium isotherms, kinetics and desorption studies. Biotechnology Reports, 30, e00614. DOI: https://doi.org/10.1016/j.btre.2021.e00614

Fatokun, V. O., Owofadeju, F. K., Ewemoje, O. E., & Ewemoje, T. A. (2021). Investigation of Adsorbent Characteristics of Carbonized Low-Density Woods in the Treatment of Textile Effluent. FUOYE Journal of Engineering and Technology, 6(2). DOI: 10.46792/fuoyejet.v6i2.623

Fu, Z., & Xi, S. (2020). The effects of heavy metals on human metabolism. Toxicology mechanisms and methods, 30(3), 167-176. DOI: https://doi.org/10.1080/15376516.2019.1701594

Gautam, A., Singh, N., Shukla, S., & Mohan, D. (2020). Lead removal efficiency of various natural adsorbents (Moringa oleifera, Prosopis juliflora, peanut shell) from textile wastewater. SN Applied Sciences, 2(2), 1-11. DOI: https://doi.org/10.1007/s42452-020-2065-0

Gebretsadik, H., Gebrekidan, A., & Demlie, L. (2020). Removal of heavy metals from aqueous solutions using Eucalyptus Camaldulensis: An alternate low cost adsorbent. Cogent Chemistry, 6(1), 1720892. DOI: https://doi.org/10.1080/23312009.2020.1720892

Gharaghani, M. A., & Malakootian, M. (2017). Photocatalytic degradation of the antibiotic ciprofloxacin by ZnO nanoparticles immobilized on a glass plate. Desalination and Water Treatment, 89, 304-314. DOI: 10.5004/dwt.2017.21378

Gu, S., Kang, X., Wang, L., Lichtfouse, E., & Wang, C. (2019). Clay mineral adsorbents for heavy metal removal from wastewater: a review. Environmental Chemistry Letters, 17(2), 629-654. DOI: https://doi.org/10.1007/s10311-018-0813-9

Habineza, A., Zhai, J., Ntakirutimana, T., Qiu, F., Li, X., & Wang, Q. (2017). Heavy metal removal from wastewaters by agricultural waste low-cost adsorbents: hindrances of adsorption technology to the large scale industrial application-a review. Desalination and Water Treatment, 78, 192-214. DOI: 10.5004/dwt.2017.20581

Honarmandrad, Z., Javid, N., & Malakootian, M. (2021). Removal efficiency of phenol by ozonation process with calcium peroxide from aqueous solutions. Applied Water Science, 11(2), 1-9. DOI: https://doi.org/10.1007/s13201-020-01344-7

Imen, Z., Hassani, A. H., & Borghaee, S. M. (2019). Comparison of the effectiveness of natural dolomite and modified dolomite in the removal of heavy metals from aqueous solutions. J Adv Environ Health Res, 7(1), 61-74. DOI: 10.22102/JAEHR.2019.148713.1102

Isa, Y. M., Harripersadth, C., Musonge, P., Sayago, A., & Morales, M. G. (2020). The application of eggshells and sugarcane bagasse as potential biomaterials in the removal of heavy metals from aqueous solutions. South African Journal of Chemical Engineering, 34(1), 142-150. DOI: https://doi.org/10.1016/j.sajce.2020.08.002

Islamuddin, R. K., Gautam, R., & More, N. (2017). Modified Sacchurum Officinarum (Sugarcane Bagasse [Sb]) Activated Powder Used as a Natural Adsorbent for the Removal of Cadmium (Cd) From Simulated Wastewater (Aqueous Solution). International Journal for Research in Applied Science & Engineering Technology (IJRASET), 5(1). 212-218.

Kadhom, M., Albayati, N., Alalwan, H., & Al-Furaiji, M. (2020). Removal of dyes by agricultural waste. Sustainable Chemistry and Pharmacy, 16, 100259. DOI: https://doi.org/10.1016/j.scp.2020.100259

Kalash, K. R., Alalwan, H. A., Al-Furaiji, M. H., Alminshid, A. H., & Waisi, B. I. (2020). Isothermal and kinetic studies of the adsorption removal of Pb (II), Cu (II), and Ni (II) ions from aqueous solutions using modified Chara sp. algae. Korean Chemical Engineering Research, 58(2), 301-306. DOI: https://doi.org/10.9713/kcer.2020.58.2.301

Kumar, M., & Tamilarasan, R. (2017). Kinetics, equilibrium data and modeling studies for the sorption of chromium by Prosopis juliflora bark carbon. Arabian Journal of Chemistry, 10, S1567-S1577. DOI: https://doi.org/10.1016/j.arabjc.2013.05.025

Kumar, S., & Sharma, A. (2019). Cadmium toxicity: effects on human reproduction and fertility. Reviews on environmental health, 34(4), 327-338. DOI: https://doi.org/10.1515/reveh-2019-0016

Lata, S., & Samadder, S. (2014). Removal of heavy metals using rice husk: a review. International Journal of Environmental Research and Development, 4(2), 165-170.

Lim, A. P., & Aris, A. Z. (2014). A review on economically adsorbents on heavy metals removal in water and wastewater. Reviews in Environmental Science and Bio/Technology, 13(2), 163-181. DOI: https://doi.org/10.1007/s11157-013-9330-2

Mahindrakar, K. V., & Rathod, V. K. (2018). Utilization of banana peels for removal of strontium (II) from water. Environmental technology & innovation, 11, 371-383. DOI: https://doi.org/10.1016/j.eti.2018.06.015

Malakootian, M., Radhakrishna, N., Mazandarany, M. P., & Hossaini, H. (2013). Bacterial-aerosol emission from wastewater treatment plant. Desalination and Water Treatment, 51(22-24), 4478-4488. DOI: https://doi.org/10.1080/19443994.2013.769668

Maruf, M. S. (2019). Removal of Copper from Textile Waste Water by Using Powdered Banana Peel as Adsorbant. Master of Science in Environmental Engineering. addis ababa science and technology university, Ethiopia.

Moradi, M., Hosseini Sabzevari, M., Marahel, F., & Shameli, A. (2021). Removal of reactive green KE-4BD and Congo red dyes in textile effluent by natural clinoptilolite particles on a biosorbent as a cheap and efficient adsorbent: experimental design and optimisation. International Journal of Environmental Analytical Chemistry, 1-19. DOI: https://doi.org/10.1080/03067319.2021.1928097

Naeimi, A., Amini, M., & Okati, N. (2022). Removal of heavy metals from wastewaters using an effective and natural bionanopolymer based on Schiff base chitosan/graphene oxide. International Journal of Environmental Science and Technology, 19(3), 1301-1312. DOI: 10.1007/s13762-021-03247-9

Nasiri, A., Malakootian, M., & Javid, N. (2022). Modelling and optimization of lead adsorption by CoFe2O4@ CMC@ HZSM-5 from aqueous solution using response surface methodology. Desalination and Water Treatment, 248, 134-148. DOI: 10.5004/dwt.2022.28046

Noor, N. M., Othman, R., Mubarak, N., & Abdullah, E. C. (2017). Agricultural biomass-derived magnetic adsorbents: Preparation and application for heavy metals removal. Journal of the Taiwan Institute of Chemical Engineers, 78, 168-177. DOI: https://doi.org/10.1016/j.jtice.2017.05.023

Nurain, A., Sarker, P., Rahaman, M., Rahman, M., & Uddin, M. (2021). Utilization of Banana (Musa sapientum) Peel for Removal of Pb2+ from Aqueous Solution. Journal of Multidisciplinary Applied Natural Science, 1(2), 117-128.

Nwosu-Obieogu, K., Dzarma, G., Okolo, B., Akatobi, K., & Aguele, F. (2021). Adsorption of Vanadium (V) From Textile Industry Effluent Using Luffa cylindrica Activated Carbon. Kemija u industriji: Časopis kemičara i kemijskih inženjera Hrvatske, 70(3-4), 129-135. DOI: https://doi.org/10.15255/KUI.2020.046

Nwosu‐Obieogu, K., & Okolo, B. I. (2020). Biosorption of chromium (VI) from textile waste water using luffa cylindrica activated carbon. Environmental Quality Management, 29(4), 23-31. DOI: https://doi.org/10.1002/tqem.21687

Oksal, C., Oguz, H. N., Catal, M., Erbay, N., Duvarcı, A., Yüzer, O., ... & Yıldız, O. T. (2022, June). Time Travel in Turkish: WordNets for Modern Turkish. In LREC 2022 Workshop Language Resources and Evaluation Conference 20-25 June 2022 (p. 75).

Pandey, S., Singh, N., Shukla, S., & Tiwari, M. (2017). Removal of lead and copper from textile wastewater using egg shells. Iranian (Iranica) Journal of Energy & Environment, 8(3), 202-209. DOI: 10.5829/ijee.2017.08.03.04

Panigrahi, T., & Santhoskumar, A. (2020). Adsorption process for reducing heavy metals in Textile Industrial Effluent with low cost adsorbents. Progress in Chemical and Biochemical Research, 3(2), 135-139. DOI: 10.33945/SAMI/PCBR.2020.2.7

Pasgar, A., Nasiri, A., & Javid, N. (2022). Single and competitive adsorption of Cu2+ and Pb2+ by tea pulp from aqueous solutions. Environmental Health Engineering And Management Journal, 9(1), 65-74. DOI: 10.34172/EHEM.2022.08

Pei, Y., Xu, G., Wu, X., Tang, K., & Wang, G. (2019). Removing Pb (II) Ions from aqueous solution by a promising absorbent of tannin-immobilized cellulose microspheres. Polymers, 11(3), 548. DOI: https://doi.org/10.3390/polym11030548

Peng, X., Su, S., Xia, M., Lou, K., Yang, F., Peng, S., & Cai, Y. (2018). Fabrication of carboxymethyl-functionalized porous ramie microspheres as effective adsorbents for the removal of cadmium ions. Cellulose, 25(3), 1921-1938. DOI: https://doi.org/10.1007/s10570-018-1656-z

Prastuti, O. P., Septiani, E. L., Kurniati, Y., & Setyawan, H. (2019). Banana peel activated carbon in removal of dyes and metals ion in textile industrial waste. Materials Science Forum, 966, 204-209. DOI: https://doi.org/10.4028/www.scientific.net/MSF.966.204

Qamar, S. A., Ashiq, M., Jahangeer, M., Riasat, A., & Bilal, M. (2020). Chitosan-based hybrid materials as adsorbents for textile dyes–A review. Case Studies in Chemical and Environmental Engineering, 2, 100021. DOI: https://doi.org/10.1016/j.cscee.2020.100021

Quansah, J. O., Hlaing, T., Lyonga, F. N., Kyi, P. P., Hong, S.-H., Lee, C.-G., & Park, S.-J. (2020). Nascent rice husk as an adsorbent for removing cationic dyes from textile wastewater. Applied Sciences, 10(10), 3437. DOI: https://doi.org/10.3390/app10103437

Rahman, A. K. M. L., Sarker, A., Ahmed, N., Mustofa, M., & Awal, A. (2021). Efficient Removal of Toxic Textile Dye using Petiole Part (Stem) of Nymphaea alba. Pollution, 7(3), 643-656. DOI: 10.22059/poll.2021.314204.943

Rahman, N., & Wilfred, C. D. (2018). Removal of Mn (VII) from Industrial Wastewater by using Alginate-Poly (vinyl) alcohol as Absorbent. Journal of Physics: Conference Series, DOI: 10.1088/1742-6596/1123/1/012067

Razi, M. A. M., Al-Gheethi, A., & Za, I. A. (2018). Removal of heavy metals from textile wastewater using sugarcane bagasse activated carbon. International Journal of Engineering & Technology, 7(4), 112-115. DOI: 10.14419/ijet.v7i4.30.22066

Reza, A., Sheikh, F. A., Abedin, M. Z., & Kim, H. (2015). Facile strategy for utilizing sugarcane bagasse as bio-adsorbent for the removal of contaminant form effluents of textile industry. Energy and Environment Focus, 4(1), 28-33.

Sharma, S., & Singh, S. N. (2020). Colour Removal of Textile Effluent by Adsorption Process Using Rice Husk. Journal of Xi'an University of Architecture & Technology, 13(3), 3100-3105.

Shiferaw, Y., Yassin, J. M., & Tedla, A. (2019). Removal of organic dye and toxic hexavalent chromium ions by natural clay adsorption. Desalin. Water Treat, 165, 222-231. DOI: 10.5004/dwt.2019.24585

Simonič, M., & Fras Zemljič, L. (2020). Functionalized wool as an efficient and sustainable adsorbent for removal of Zn (II) from an aqueous solution. Materials, 13(14), 3208. DOI: https://doi.org/10.3390/ma13143208

Sruthi, R., & Shabari, M. (2018). Removal of lead from textile effluent using Citrus aurantium peel adsorbent and Aloe barbadensis gel adsorbent. International Research Journal of Engineering and Technology, 5(3), 3881-3885.

Tamjidi, S., Esmaeili, H., & Moghadas, B. K. (2019). Application of magnetic adsorbents for removal of heavy metals from wastewater: a review study. Materials Research Express, 6(10), 102004. DOI: https://doi.org/10.1088/2053-1591/ab3ffb

Tariq, W., Saifullah, M., Anjum, T., Javed, M., Tayyab, N., & Shoukat, I. (2018). Removal of heavy metals from chemical industrial wastewater using agro based bio-sorbents. Acta Chemica Malaysia, 2(2), 9-14. DOI: http://doi.org/10.26480/acmy.02.2018.09.14

Tharani, A., Harish, R., Mageshkumar, P., & Ramesh, S. (2017). Comparative study on removal of heavy metals from textile industry wastewater using various adsorbent. International Journal of Advanced Science and Engineering Research, 2(2), 12-22.

Tony, M. A. (2021). An industrial ecology approach: green cellulose-based bio-adsorbent from sugar industry residue for treating textile industry wastewater effluent. International Journal of Environmental Analytical Chemistry, 101(2), 167-183. DOI: https://doi.org/10.1080/03067319.2019.1661397

Tripathi, A., & Ranjan, M. R. (2015). Heavy metal removal from wastewater using low cost adsorbents. J Bioremed Biodeg, 6(6), 315. DOI: 10.4172/2155-6199.1000315

Velusamy, S., Roy, A., Sundaram, S., & Kumar Mallick, T. (2021). A review on heavy metal ions and containing dyes removal through graphene oxide‐based adsorption strategies for textile wastewater treatment. The Chemical Record, 21(7), 1570-1610. DOI: https://doi.org/10.1002/tcr.202000153

Wajima, T. (2018). Preparation of sulfur-impregnated carbonaceous adsorbent from rice husk for heavy metal removal from aqueous solution. International Journal of Environmental Science and Development, 9(2), 38-42. DOI: 10.18178/ijesd.2018.9.2.1070

Wong, S. M., Zulkifli, M. Z. A., Nordin, D., & Teow, Y. H. (2021). Synthesis of Cellulose/Nano-hydroxyapatite Composite Hydrogel Absorbent for Removal of Heavy Metal Ions from Palm Oil Mill Effluents. Journal of Polymers and the Environment, 29(12), 1-14. DOI: https://doi.org/10.1007/s10924-021-02183-6

Yadav, S., Yadav, A., Bagotia, N., Sharma, A. K., & Kumar, S. (2021). Adsorptive potential of modified plant-based adsorbents for sequestration of dyes and heavy metals from wastewater-A review. Journal of Water Process Engineering, 42, 102148. DOI: https://doi.org/10.1016/j.jwpe.2021.102148

Yue, X., Huang, J., Jiang, F., Lin, H., & Chen, Y. (2019). Synthesis and characterization of cellulose-based adsorbent for removal of anionic and cationic dyes. Journal of Engineered Fibers and Fabrics, 14, 1558925019828194. DOI: https://doi.org/10.1177/1558925019828194

Zafar, S., Khan, M. I., Khraisheh, M., Shahida, S., Javed, T., Mirza, M. L., & Khalid, N. (2019). Use of rice husk as an effective sorbent for the removal of cerium ions from aqueous solution: kinetic, equilibrium and thermodynamic studies. Desalin Water Treat, 150, 124-135. DOI: 10.5004/dwt.2019.23724

Zhao, D., Ye, W., & Cui, W. (2022). Fabrication of novel bio-adsorbent and its application for the removal of Cu (II) from aqueous solution. Environmental Science and Pollution Research, 29(20), 29613-29623.

Zhu, C., Hu, T., Tang, L., Zeng, G., Deng, Y., Lu, Y., ... & Yu, J. (2018). Highly efficient extraction of lead ions from smelting wastewater, slag and contaminated soil by two-dimensional montmorillonite-based surface ion imprinted polymer absorbent. Chemosphere, 209, 246-257. DOI: https://doi.org/10.1016/j.chemosphere.2018.06.105

Zulfareen, N., Venugopal, T., & Sajitha, I. (2018). Removal of Zinc from Synthetic Waste Water by Activated Carbon Prosopis Juliflora. International Journal of Advanced Science and Engineering, 4, 746-749. DOI: 10.29294/IJASE.4.4.2018.746-749

Downloads

Published

2022-08-25

How to Cite

Mariappan, S., & Issac, R. . (2022). Removal of heavy metals from textile industries with natural adsorbents. Journal of Current Science and Technology, 12(2), 372–390. Retrieved from https://ph04.tci-thaijo.org/index.php/JCST/article/view/303

Issue

Section

Review Article