Ionic transport study of PVDF-PEO/ NaNO3 based solid electrolyte

Authors

  • Saini Ponam Physics Department, Bhagwant University Ajmer, Ajmer- 305004, Rajasthan, India
  • Parshuram Singh Physics Department, Bhagwant University Ajmer, Ajmer- 305004, Rajasthan, India

Keywords:

ionic conductivity, NaNO3, PVDF-PEO, solid polymer electrolytes

Abstract

The invention of solid electrolytes appears to be cutting-edge technology for the battery system as they conquer the majority of the issues associated with liquid electrolytes. However, the most significant constraints for solid electrolytes are poor ionic conductivity and inadequate power density. In the current study, an initiative is being taken to enhance the ionic conductivity of solid electrolytes. In this view, several samples of solid electrolytes are prepared by differing the proportion of PVDF and PEO; also, NaNO3 is utilized as a conductivity booster in various ratios. Due to numerous advantages, the cast solution technique is opted to prepare all the examined electrolytes. Further, the homogeneity of all the substances existing in the electrolytes is observed with XRD. Also, all the ready samples' ionic conductivity and dielectric constant are tested to analyze their performance in lithium-ion batteries. A homogeneous bonding between PVDF and PEO is observed in the electrolyte matrix, but the presence of NaNO3 is not observed thoroughly. The ionic conductivity of all samples looks stable and increases with the concentration of NaNO3 in the compound matrix. Therefore, it is being concluded that using NaNO3 in the PVDF-PEO-based polymer electrolytes has favorably impacted conductivity and stability. The current research is a reasonable attempt to improve the ionic conductivity of PVDF-PEO-based electrolytes with one-of-a-kind proportions.

References

Arya, A., & Sharma, A. L. (2018). Effect of salt concentration on dielectric properties of Li-ion conducting blend polymer electrolytes. Journal of Materials Science: Materials in Electronics, 29(20), 17903-17920. DOI: https://doi.org/10.1007/S10854-018-9905-3

Barbosa, J. C., Gonçalves, R., Costa, C. M., de Zea Bermudez, V., Fidalgo-Marijuan, A., Zhang, Q., & Lanceros-Méndez, S. (2021). Metal–organic frameworks and zeolite materials as active fillers for lithium-ion battery solid polymer electrolytes. Materials Advances, 2(12), 3790-3805. DOI: https://doi.org/10.1039/d1ma00244a

Caradant, L., Lepage, D., Nicolle, P., Prébé, A., Ayme-Perrot, D., & Dolle, M. (2020, November). Blend of Polymers As New Solid Electrolytes for Lithium-Ion Batteries. ECS Meeting Abstracts (No. 5, p. 896). IOP Publishing. DOI: https://doi.org/10.1149/MA2020-025896MTGABS

Castillo, J., Santiago, A., Judez, X., Garbayo, I., Coca Clemente, J. A., Morant-Miñana, M. C., ... & Li, C. (2021). Safe, flexible, and high-performing gel-polymer electrolyte for rechargeable lithium metal batteries. Chemistry of Materials, 33(22), 8812-8821. DOI: https://doi.org/10.1021/ACS.CHEMMATER.1C02952/SUPPL_FILE/CM1C02952_SI_001.PDF

Chai, K. L., Aung, M. M., Noor, I. M., Lim, H. N., & Abdullah, L. C. (2022). Observation of ionic conductivity on PUA-TBAI-I2 gel polymer electrolyte. Scientific Reports, 12(1), 1-20. DOI: https://doi.org/10.1038/s41598-021-03965-7

Chen, Z., Chao, Y., Li, W., Wallace, G. G., Bussell, T., Ding, J., & Wang, C. (2021). Abuse‐Tolerant Electrolytes for Lithium‐Ion Batteries. Advanced Science, 8(11), 2003694. DOI: https://doi.org/10.1002/ADVS.202003694

Duan, J., Tang, X., Dai, H., Yang, Y., Wu, W., Wei, X., & Huang, Y. (2019). Building Safe Lithium-Ion Batteries for Electric Vehicles: A Review. Electrochemical Energy Reviews, 3(1), 1-42. DOI: https://doi.org/10.1007/S41918-019-00060-4

Feng, J., Wang, L., Chen, Y., Wang, P., Zhang, H., & He, X. (2021). PEO based polymer-ceramic hybrid solid electrolytes: a review. Nano Convergence, 8(1), 1-12. DOI: https://doi.org/10.1186/S40580-020-00252-5/FIGURES/5

Gancarz, P., Zorębski, E., & Dzida, M. (2021). Influence of experimental conditions on the electrochemical window. Case study on bis(trifluoromethylsulfonyl)imide-based ionic liquids. Electrochemistry Communications, 130, 107107. DOI: https://doi.org/10.1016/J.ELECOM.2021.107107

Gondaliya, N., Kanchan, D. K., Sharma, P., & Jayswal, M. S. (2012). Dielectric and electric properties of plasticized PEO-AgCF3SO3-SiO2 nanocomposite polymer electrolyte system. Polymer Composites, 33(12), 2195–2200. DOI: https://doi.org/10.1002/PC.22362

Gulino, V., Brighi, M., Murgia, F., Ngene, P., Jongh, P. de, Černý, R., & Baricco, M. (2021). Room-Temperature Solid-State Lithium-Ion Battery Using a LiBH4–MgO Composite Electrolyte. ACS Applied Energy Materials, 4(2), 1228–1236. DOI: https://doi.org/10.1021/ACSAEM.0C02525

Isaac, J. A., Mangani, L. R., Devaux, D., & Bouchet, R. (2022). Electrochemical Impedance Spectroscopy of PEO-LATP Model Multilayers: Ionic Charge Transport and Transfer. ACS Applied Materials and Interfaces, 14(11), 13158-13168. DOI: https://doi.org/10.1021/ACSAMI.1C19235/ASSET/IMAGES/MEDIUM/AM1C19235_M012.GI

Kumar, M. (2020). Social, economic, and environmental impacts of renewable energy resources. Wind solar hybrid renewable energy system, 1. DOI: https://doi.org/10.5772/INTECHOPEN.89494

Kumar, P., & Kumar, N. (2016). Effect of EGR on performance and emission characteristics of a dual fuel engine fuelled with CNG and JOME. Biofuels, 7(6), 743-751. DOI: https://doi.org/10.1080/17597269.2016.1193838

Kumar, P., & Kumar, N. (2018). Study of ignition delay period of n-Butanol blends with JOME and diesel under static loading conditions. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 40(14), 1729-1736. DOI: https://doi.org/10.1080/15567036.2018.1486904

Kumar, P., & Ramprasad Mangishetti, S. (2020). Process Optimization of Biodiesel Production from Jatropha Oil Using Response Surface Methodology and It’s Characterization. Solid State Technology, 63(6), 22556-22568. DOI: http://solidstatetechnology.us/index.php/JSST/article/view/9104

Liang, X., Li, S., Yang, G., Wu, X., Huang, D., Ning, Y., Luo, J. G., & Fang, Z. (2021). High lithium-ion conductivity in all-solid-state lithium batteries by Sb doping LLZO. Applied Physics A 2021 128:1, 128(1), 1-12. DOI: https://doi.org/10.1007/S00339-021-05128-X

Lue, S. J., Wu, Y. L., Tung, Y. L., Shih, C. M., Wang, Y. C., & Li, J. R. (2015). Functional titanium oxide nanoparticles as electron lifetime, electrical conductance enhancer, and long-term performance booster in quasi-solid-state electrolyte for dye-sensitized solar cells. Journal of Power Sources, 274, 1283-1291. DOI: https://doi.org/10.1016/j.jpowsour.2014.10.194

Manani, N. H., Jethva, H. O., & Joshi, M. J. (2020). Dielectric Relaxation, Conductivity Mechanism and Complex Impedance Spectroscopic Studies of Pure and Cadmium Mixed Cobalt Levo-Tartrate Crystals. International Journal of Scientific Research in Physics and Applied Sciences, 8(1), 8-15. DOI: https://doi.org/10.26438/ijsrpas/v8i1.815

May, G. J., Davidson, A., & Monahov, B. (2018). Lead batteries for utility energy storage: A review. Journal of Energy Storage, 15, 145-157. DOI: https://doi.org/10.1016/J.EST.2017.11.008

Meng, N., Zhu, X., & Lian, F. (2022). Particles in composite polymer electrolyte for solid-state lithium batteries: A review. Particuology, 60, 14-36. DOI: https://doi.org/10.1016/J.PARTIC.2021.04.002

Nidhi, Patel, S., & Kumar, R. (2019). Synthesis and characterization of magnesium ion conductivity in PVDF based nanocomposite polymer electrolytes disperse with MgO. Journal of Alloys and Compounds, 789, 6–14. https://doi.org/10.1016/j.jallcom.2019.03.089

Owusu, P. A., & Asumadu-Sarkodie, S. (2016). A review of renewable energy sources, sustainability issues and climate change mitigation. http://www.Editorialmanager.Com/Cogenteng, 3(1), 1167990. DOI: https://doi.org/10.1080/23311916.2016.1167990

Patel, S., & Kumar, R. (2019). Synthesis and characterization of magnesium ion conductivity in PVDF based nanocomposite polymer electrolytes disperse with MgO. Journal of Alloys and Compounds, 789, 6-14. DOI: https://doi.org/10.1016/j.jallcom.2019.03.089

Pender, J. P., Jha, G., Youn, D. H., Ziegler, J. M., Andoni, I., Choi, E. J., ... & Mullins, C. B. (2020). Electrode Degradation in Lithium-Ion Batteries. ACS Nano, 14(2), 1243-1295. DOI: https://doi.org/10.1021/ACSNANO.9B04365

Ponam, & Singh, P. (2021). Improved mechanical and electrochemical properties of PVDF / PEO / LiClO 4 based solid polymer electrolyte by using TiO 2 and MgO nanoparticles. Journal of Engineering Research, Special Issue, 1-16. DOI: https://doi.org/10.36909/jer.ICETET.14993

Ponam, & Singh, P. (2022). Effect of PEO Concentration on Electrochemical and Mechanical Properties of PVDF, PEO and LATP Blended Solid Polymer Electrolyte. Smart Innovation, Systems and Technologies, 239, 67-76. DOI: https://doi.org/10.1007/978-981-16-2857-3_9

Rao, M. V. M., Reddy, S. N., & Chary, A. S. (2005). DC ionic conductivity of NaNO3: γ-Al2O3 composite solid electrolyte system. Physica B: Condensed Matter, 362(1–4), 193-198. DOI: https://doi.org/10.1016/J.PHYSB.2005.02.011

Ratner, M. A., & Shriver, D. F. (1988). Ion Transport in Solvent-Free Polymers. Chemical Reviews, 88(1), 109-124. DOI: https://doi.org/10.1021/cr00083a006

Reynolds, J. G. (2018). Salt solubilities in aqueous solutions of NaNO3, NaNO2, NaCl, and NaOH: A Hofmeister-like series for understanding alkaline nuclear waste. ACS omega, 3(11), 15149-15157. DOI: https://doi.org/10.1021/acsomega.8b02052

Santoyo-Ramón, J. A., Casilari, E., & Cano-García, J. M. (2022). A study of the influence of the sensor sampling frequency on the performance of wearable fall detectors. Measurement, 193, 110945. DOI: https://doi.org/10.1016/J.MEASUREMENT.2022.110945

Sengwa, R. J., & Dhatarwal, P. (2020). Predominantly chain segmental relaxation dependent ionic conductivity of multiphase semicrystalline PVDF/PEO/LiClO4 solid polymer electrolytes. Electrochimica Acta, 338, 135890. DOI: https://doi.org/10.1016/j.electacta.2020.135890

Shaqsi, A. Z. A., Sopian, K., & Al-Hinai, A. (2020). Review of energy storage services, applications, limitations, and benefits. Energy Reports, 6, 288-306. DOI: https://doi.org/10.1016/J.EGYR.2020.07.028

Sharma, S., Panwar, A. K., & Tripathi, M. M. (2020). Storage technologies for electric vehicles. Journal of Traffic and Transportation Engineering (English Edition), 7(3), 340-361. DOI: https://doi.org/10.1016/J.JTTE.2020.04.004

Shetty, S. K., Ismayil, Hegde, S., Ravindrachary, V., Sanjeev, G., Bhajantri, R. F., & Masti, S. P. (2021). Dielectric relaxations and ion transport study of NaCMC:NaNO3 solid polymer electrolyte films. Ionics, 27(6), 2509-2525. DOI: https://doi.org/10.1007/S11581-021-04023-Y/TABLES/6

Slavkova, Z., Ławniczak, P., Lindner, Ł., Kostadinova, O., Petkova, T., & Zdanowska-Frączek, M. (2018). LiNaSO4 dispersed NaNO3 composite – A new solid electrolyte? Materials Letters, 223, 29-32. DOI: https://doi.org/10.1016/J.MATLET.2018.03.192

Suriyakumar, S., Kathiresan, M., & Stephan, A. M. (2019). Charge–Discharge and Interfacial Properties of Ionic Liquid-Added Hybrid Electrolytes for Lithium–Sulfur Batteries. ACS Omega, 4(2), 3894-3903. DOI: https://doi.org/10.1021/ACSOMEGA.8B03544

Talip, R. A. A., Yahya, W. Z. N., & Bustam, M. A. (2020). Ionic liquids roles and perspectives in electrolyte for dye-sensitized solar cells. Sustainability (Switzerland), 12(18), 7598. DOI: https://doi.org/10.3390/su12187598

Vahini, M., & Muthuvinayagam, M. (2019). Synthesis and electrochemical studies on sodium ion conducting PVP based solid polymer electrolytes. Journal of Materials Science: Materials in Electronics, 30(6), 5609-5619. DOI: https://doi.org/10.1007/s10854-019-00854-8

Wang, H., Lin, C., Yan, X., Wu, A., Shen, S., Wei, G., & Zhang, J. (2020). Mechanical property-reinforced PEO/PVDF/LiClO4/SN blend all solid polymer electrolyte for lithium ion batteries. Journal of Electroanalytical Chemistry, 869. DOI: https://doi.org/10.1016/j.jelechem.2020.114156

Wang, Z., Guo, Q., Jiang, R., Deng, S., Ma, J., Cui, P., & Yao, X. (2022). Porous poly(vinylidene fluoride) supported three-dimensional poly(ethylene glycol) thin solid polymer electrolyte for flexible high temperature all-solid-state lithium metal batteries. Chemical Engineering Journal, 435, 135106. DOI: https://doi.org/10.1016/J.CEJ.2022.135106

Wang, Z., Shen, L., Deng, S., Cui, P., & Yao, X. (2021). 10 μm-Thick High-Strength Solid Polymer Electrolytes with Excellent Interface Compatibility for Flexible All-Solid-State Lithium-Metal Batteries. Advanced Materials, 33(25), 2100353. DOI: https://doi.org/10.1002/ADMA.202100353

Wani, S. I., & Rafiuddin, R. (2018). Impedance spectroscopy and conductivity studies of KCl-doped solid electrolyte. Journal of Theoretical and Applied Physics, 12(2), 141-146. DOI: https://doi.org/10.1007/S40094-018-0294-Z/FIGURES/5

Ward, M. H., Jones, R. R., Brender, J. D., De Kok, T. M., Weyer, P. J., Nolan, B. T., ... & Van Breda, S. G. (2018). Drinking water nitrate and human health: an updated review. International journal of environmental research and public health, 15(7), 1557. DOI: https://doi.org/10.3390/IJERPH15071557

Wu, F., Feng, T., Bai, Y., Wu, C., Ye, L., & Feng, Z. (2009). Preparation and characterization of solid polymer electrolytes based on PHEMO and PVDF-HFP. Solid State Ionics, 180(9-10), 677-680. DOI: https://doi.org/10.1016/j.ssi.2009.03.003

Xia, S., Wu, X., Zhang, Z., Cui, Y., & Liu, W. (2019). Practical Challenges and Future Perspectives of All-Solid-State Lithium-Metal Batteries. Chem, 5(4), 753-785. DOI: https://doi.org/10.1016/J.CHEMPR.2018.11.013

Xu, F., Deng, S., Guo, Q., Zhou, D., & Yao, X. (2021). Quasi-Ionic Liquid Enabling Single-Phase Poly(vinylidene fluoride)-Based Polymer Electrolytes for Solid-State LiNi0.6Co0.2Mn0.2O2||Li Batteries with Rigid-Flexible Coupling Interphase. Small Methods, 5(7), 2100262. DOI: https://doi.org/10.1002/SMTD.202100262

Yu, X., & Manthiram, A. (2021). A review of composite polymer-ceramic electrolytes for lithium batteries. Energy Storage Materials, 34, 282-300. DOI: https://doi.org/10.1016/j.ensm.2020.10.006

Zhang, L., Li, X., Yang, M., & Chen, W. (2021). High-safety separators for lithium-ion batteries and sodium-ion batteries: advances and perspective. Energy Storage Materials, 41, 522-545. DOI: https://doi.org/10.1016/J.ENSM.2021.06.033

Zhang, X., & Huo, H. (2021). Nuclear magnetic resonance studies of organic-inorganic composite solid electrolytes. Magnetic Resonance Letters, 1(2), 142-152. DOI: https://doi.org/10.1016/J.MRL.2021.10.004

Zhao, W., Yi, J., He, P., & Zhou, H. (2019). Solid-State Electrolytes for Lithium-Ion Batteries: Fundamentals, Challenges and Perspectives. Electrochemical Energy Reviews, 2(4), 574-605. DOI: https://doi.org/10.1007/S41918-019-00048-0

Downloads

Published

2023-02-12

How to Cite

Ponam, S. ., & Singh, P. . (2023). Ionic transport study of PVDF-PEO/ NaNO3 based solid electrolyte. Journal of Current Science and Technology, 12(2), 315–326. Retrieved from https://ph04.tci-thaijo.org/index.php/JCST/article/view/297

Issue

Section

Research Article