Identification of volatile bioactive compounds from the pericarp and seed extracts of Alpinia mutica Roxb. by GC–MS analysis

Authors

  • Meranee Kidruangphokin Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
  • Surat Boonphong Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
  • Nungruthai Suphrom Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand and Department of Chemistry, Faculty of Science and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
  • Tanatsaporn Nabnian Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
  • Phatsadeeporn Piankarn Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand

Keywords:

Alpinia mutica, bioactive compounds, GC–MS, orchid ginger, pericarp, seed, volatile component

Abstract

Alpinia mutica Roxb. is a perennial rhizomatous herbaceous plant of the family Zingiberaceae. The fruits of this plant are commonly used in traditional East Asian medicines. While the phytochemicals of whole A. mutica fruits have been previously investigated, the chemical constituents of two parts of the plant, the pericarp and the seed, have not been examined separately. Therefore, the goal of this study was to identify the volatile constituents of A. mutica pericarps and seeds. Each part was extracted with dichloromethane, and the extract was further analyzed by gas chromatography–mass spectroscopy (GC–MS). Seventeen compounds were identified in different parts of the A. mutica fruit. Slightly different chemical profiles were observed for the pericarp and seed extracts. The main volatile component of the pericarp extract was a diarylheptanoid, specifically 1,7-diphenyl-4,6-heptadien-3-one (45.28%). The most abundant volatile components in the seed extract sample were 5,6-dehydrokawain (64.94%), pinocembrin (22.51%), and farnesol (9.18%). This is the first report of the difference between the chemical components of the A. mutica pericarp and seed. Moreover, the phytochemical studies and the compounds identified by GC–MS showed that the A. mutica pericarp and seed contain important bioactive compounds, which have been reported as having anti-cancer, anti-inflammatory, and neuroprotective effects. The outcome of this study was the creation of fingerprint analysis based on the GC–MS data and the preliminary identification of the chemical components in A. mutica pericarps and seeds, which is related to the reported biological activities and use of the A. mutica fruit.

References

Akram, S., Ab Ghani, N. I., Khamis, S., & Zulkifly, S. (2021). Newly designed CHS genic primers for four Zingiberaceae species (Alpinia mutica, Alpinia rafflesiana, Hornstedtia leonurus and Scaphochlamys kunstleri). IOP Conference Series: Earth and Environmental Science, 948(1), 012016.

Andriamaharavo, N. R. (2014). Retention Data. NIST Mass Spectrometry Data Center. NIST Mass Spectrometry Data Center. Retrieved May 10, 2021, from https://webbook.nist.gov/cgi/cbook.cgi?

ID=C15345898&Units=SI&Mask=2000#ref-1

Chaurasiya, N. D., León, F., Ding, Y., Gómez-Betancur, I., Benjumea, D., Walker, L. A., ... & Tekwani, B. L. (2017). Interactions of desmethoxyyangonin, a secondary metabolite from Renealmia alpinia, with human monoamine oxidase-A and oxidase-B. Evidence-based Complementary and Alternative Medicine, 2017, 4018724. DOI: 10.1155/2017/4018724

Dyary, H. O., Arifah, A. K., Sukari, M. A., & Sharma, R. S. K. (2019). Antitrypanosomal and cytotoxic activities of botanical extracts from Murraya koenigii (L.) and Alpinia mutica Roxb. Tropical Biomedicine, 36(1), 94-102.

Gan, W., Li, X., Cui, Y., Xiao, T., Liu, R., Wang, M., ... & Yang, C. (2021). Pinocembrin relieves lipopolysaccharide and bleomycin induced lung inflammation via inhibiting TLR4-NF-κB-NLRP3 inflammasome signaling pathway. International Immunopharmacology, 90, 107230. DOI: 10.1016/j.intimp.2020.107230

Hanieh, H., Islam, V. I. H., Saravanan, S., Chellappandian, M., Ragul, K., Durga, A., ... & Thirugnanasambantham, K. (2017). Pinocembrin, a novel histidine decarboxylase inhibitor with anti-allergic potential in vitro. European Journal of Pharmacology, 814, 178-186. DOI: 10.1016/j.ejphar.2017.08.012

Hao, C. Y., Fan, R., Qin, X. W., Hu, L. S., Tan, L. H., Xu, F., & Wu, B. D. (2018). Characterization of volatile compounds in ten Piper species cultivated in Hainan Island, South China. International Journal of Food Properties, 21(1), 633-644. DOI: 10.1080/10942912.2018.1446147

Hseu, Y. C., Chiang, Y. C., Vudhya Gowrisankar, Y., Lin, K. Y., Huang, S. T., Shrestha, S., ... & Yang, H. L. (2020). The in vitro and in vivo anticancer properties of chalcone flavokawain B through induction of ROS-mediated apoptotic and autophagic cell death in human melanoma cells. Cancers (Basel), 12(10), 2936. DOI: 10.3390/cancers12102936

Huong, L. T., Dai, D. N., Thang, T. D., Bach, T. T., & Ogunwande, I. A. (2016). The essential oils of the leaf, pseudostem root and fruit of Alpinia mutica Roxb. Journal of Essential Oil Bearing Plants, 19(8), 2049-2055. DOI: 10.1080/0972060X.2016.1244018

Ibrahim, H., Sivasothy, Y., Syamsir, D. R., Nagoor, N. H., Jamil, N., & Awang, K. (2014). Essential oil composition and antimicrobial activities of two closely related species, Alpinia mutica Roxb. and Alpinia latilabris Ridl., from Peninsular Malaysia. The Scientific World Journal, 2014, 430831. DOI: 10.1155/2014/430831

Jantan, I., Pisar, M., Sirat, H.M., Basar, N., Jamil, S., Ali, R.M., & Jalil, J. (2004). Inhibitory effects of compounds from Zingeberaceae species on platelet activating factor receptor binding. Phytotherapy Research, 18(12), 1005-1007. DOI: 10.1002/ptr.1608

Jantan, I., Raweh, S. M., Sirat, H. M., Jamil, S., Yasin, Y. M., Jalil, J., & Jamal, J. A. (2008). Inhibitory effect of compounds from Zingiberaceae species on human platelet aggregation. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 15(4), 306-309. DOI: 10.1016/j.phymed.2007.08.002

Jiang, L., Yang, Y., Feng, H., Zhou, Q., & Liu, Y. (2020). Pinocembrin inhibits the proliferation, migration, invasiveness, and epithelial-mesenchymal transition of colorectal cancer cells by regulating LACTB. Cancer Biotherapy and Radiopharmaceuticals, 2020. DOI: 10.1089/cbr.2020.4052

Jung, Y. Y., Hwang, S. T., Sethi, G., Fan, L., Arfuso, F., & Ahn, K. S. (2018). Potential anti-Inflammatory and anti-cancer properties of farnesol. Molecules, 23(11), 2827. DOI: 10.3390/molecules23112827

Kafkas, E., Cabaroglu, T., Selli, S., Bozdoğan, A., Kürkçüoğlu, M., Paydaş, S., & Başer, K. H. C. (2006). Identification of volatile aroma compounds of strawberry wine using solid-phase microextraction techniques coupled with gas chromatography–mass spectrometry. Flavour and Fragrance Journal, 21(1), 68-71. DOI: 10.1002/ffj.1503

Lopes, A. P., Branco, R. R. D. O. C., de Alcântara Oliveira, F. A., Campos, M. A. S., de Carvalho Sousa, B., Agostinho, Í. R. C., ... & dos Santos Soares, M. J. (2021). Antimicrobial, modulatory, and antibiofilm activity of tt-farnesol on bacterial and fungal strains of importance to human health. Bioorganic & Medicinal Chemistry Letters, 47,128192. DOI: 10.1016/j.bmcl.2021.128192

Ma, X. N., Xie, C. L., Miao, Z., Yang, Q., & Yang, X. W. (2017). An overview of chemical constituents from Alpinia species in the last six decades. RSC Advances, 7(23), 14114-14144. DOI: 10.1039/C6RA27830B

Malami, I., Muhammad, A., Abubakar, I. B., Etti, I. C., Waziri, P. M., Abubakar, R. M., & Mshelia, H. E. (2018). 5,6-Dehydrokawain from the rhizome of Alpinia mutica Roxb. induced proangiogenic tumour-derived VEGF of HT-29 colorectal cancer. Natural Product Research, 32(24), 2964-2967. DOI: 10.1080/14786419.2017.1392954

Malek, S. N. A., Phang, C. W., Ibrahim, H., Wahab, N. A., & Sim, K. S. (2011). Phytochemical and cytotoxic investigations of Alpinia mutica rhizomes. Molecules, 16(1), 583-592. DOI: 10.3390/molecules16010583

Milos, M., & Radonic, A. (2000). Gas chromatography mass spectral analysis of free and glycosidically bound volatile compounds from Juniperus oxycedrus L. growing wild in Croatia. Food Chemistry, 68(3), 333-338. DOI: 10.1016/S0308-8146(99)00192-2

Natsume, N., Yonezawa, T., Woo, J. T., & Teruya, T. (2020). Effect of pinocembrin isolated from Alpinia zerumbet on osteoblast differentiation. Cytotechnology, 73(3), 307-317. DOI: 10.1007/s10616-020-00427-2

Nishidono, Y., Okada, R., Iwama, Y., Okuyama, T., Nishizawa, M., & Tanaka, K. (2020). Anti-inflammatory kavalactones from Alpinia zerumbet. Fitoterapia, 140, 104444. DOI: 10.1016/j.fitote.2019.104444

Pluskal, T., Torrens-Spence, M. P., Fallon, T. R., De Abreu, A., Shi, C. H., & Weng, J. K. (2019). The biosynthetic origin of psychoactive kavalactones in kava. Nature plants, 5(8), 867-878. DOI: 10.1038/s41477-019-0474-0

Puccio, P. (2000). Monaco Nature Encyclopedia, Discover the Biodiversity: Alpinia mutica. Retrieved May 10, 2021, from https://www.monaconatureencyclopedia.com/alpinia-mutica-2/?lang=en

Motiur Rahman, A. F. M., Lu, Y., Lee, H. J., Jo, H., Yin, W., Alam, M. S., ... & Jahng, Y. (2018). Linear diarylheptanoids as potential anticancer therapeutics: synthesis, biological evaluation, and structure–activity relationship studies. Archives of pharmacal research, 41(12), 1131-1148. DOI: 10.1007/s12272-018-1004-8

Roman, W. A., Gomes, D. B., Zanchet, B., Schönell, A. P., Diel, K. A., Banzato, T. P., ... & Santos, C. A. M. (2017). Antiproliferative effects of pinostrobin and 5,6-dehydrokavain isolated from leaves of Alpinia zerumbet. Revista Brasileira de Farmacognosia, 27(5), 592-598. DOI: 10.1016/j.bjp.2017.05.007

Shapi, M.M., & Hesso, A. (1990). Thermal decomposition of polystyrene volatile compounds from large-scale pyrolysis. Journal of Analytical and Applied Pyrolysis, 18(2), 143-161. DOI: 10.1016/0165-2370(90)80004-8

Sirat, H. M., Basar, N., & Jani, N. A. (2011). Chemical compositions of the rhizome oils of two Alpinia species of Malaysia. Natural Product Research, 25(10), 982-986. DOI: 10.1080/14786419.2010.529079

Sirat, H. M., & Jani, N. A. (2013). Chemical constituents of the leaf of Alpinia mutica Roxb. Natural Product Research, 27(16), 1468-1470. DOI: 10.1080/14786419.2012.718772

Sirat, H. M., Khalid, N. F. M., Jani, N. A., & Basar, N. (2009). Chemical composition of the fruits oil of Alpinia mutica Roxb. (Zingiberaceae). Journal of Essential Oil Research, 21(5), 457-458. DOI: 10.1080/10412905.2009.9700217

Sirat, H. M., & Nordin, A. B. (1995). Chemical composition of the rhizome oil of Alpinia conchigera Griff from Malaysia. Journal of Essential Oil Research, 7(2), 195-197. DOI: 10.1080/10412905.1995.969

Sirat, H. M., Rahman, A. A., Itokawa, H., & Morita, H. (1996). Constituents of the rhizomes of two Alpinia species of Malaysia. Planta Medica, 62(2), 188-189. DOI: 10.1055/s-2006-957857

Stojanovic, G., Palic, R., Alagic, S., & Zeković, Z. (2000). Chemical composition and antimicrobial activity of the essential oil and CO2 extracts of semi-oriental tobacco, Prilep. Flavour and Fragrance Journal, 15(5), 335-338. DOI: 10.1002/1099-1026(200009/10)15:53.0.CO;2-W

Sun, D. J., Zhu, L. J., Zhao, Y. Q., Zhen, Y. Q., Zhang, L., Lin, C. C., & Chen, L. X. (2020). Diarylheptanoid: A privileged structure in drug discovery. Fitoterapia, 142,104490. DOI: 10.1016/j.fitote.2020.

Suphrom, N., Insumrong, K., Ingkaninan, K., & Boonphong, S. (2019). Gas chromatography-mass spectrometry analysis and biological activities of hexane extract from Boesenbergia xiphostachya (Gagnep.) Loes. Rhizome. Agriculture and Natural Resources, 53(5), 472-478.

Tananaki, C., Liolios, V., Kanelis, D., & Rodopoulou, M. A. (2022). Investigation of volatile compounds in combination with multivariate analysis for the characterization of monofloral honeys. Applied Sciences, 12(1), 264. DOI: 10.3390/app12010264

Tan, B. C., Tan, S. K., Wong, S. M., Ata, N., Rahman, N. A., & Khalid, N. (2015). Distribution of flavonoids and cyclohexenyl chalcone derivatives in conventional propagated and in vitro-derived field-grown Boesenbergia rotunda (L.) Mansf. Journal of Evidence-Based Complementary & Alternative Medicine, 2015, 451870. DOI: 10.1155/2015/451870

Van Den Dool, H. A. N. D., & Kratz, P. D. (1963). A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. Journal of Chromatography A, 11, 463-471. DOI: 10.1016/j.phymed.2007.08.002

Wang, K., Lv, Q., Miao, Y. M., Qiao, S. M., Dai, Y., & Wei, Z. F. (2018). Cardamonin, a natural flavone, alleviates inflammatory bowel disease by the inhibition of NLRP3 inflammasome activation via an AhR/Nrf2/NQO1 pathway. Biochemical Pharmacology, 155, 494-509. DOI: 10.1016/j.bcp.2018.07.039

Wang, W., Zheng, L., Xu, L., Tu, J., & Gu, X. (2020). Pinocembrin mitigates depressive-like behaviorsinduced by chronic unpredictable mild stress through ameliorating neuroinflammation and apoptosis. Molecular Medicine, 26(1):53. DOI: 10.1186/s10020-020-00179-x

Wesołowska, A., Jadczak, P., Kulpa, D., & Przewodowski, W. (2019). Gas chromatography-mass spectrometry (GC-MS) analysis of essential oils from AgNPs and AuNPs elicited Lavandula angustifolia in vitro cultures. Molecules, 24(3), 606. DOI: 10.3390/molecules24030606

Yáñez, X., Pinzón, M. L., Solano, F., & Sánchez, L. R. (2002). Chemical composition of the essential oil of Psidium caudatum McVaugh. Molecules, 7(9), 712-716. DOI: 10.3390/70900712

Yao, F., Huang, Y., Wang, Y., & He, X. (2018). Anti-inflammatory diarylheptanoids and phenolics from the rhizomes of kencur (Kaempferia galanga L.). Industrial Crops and Products, 125, 454-461. DOI: 10.1016/j.indcrop.2018.09.026

Zahra, M. H., Salem, T. A., El-Aarag, B., Yosri, N., El-Ghlban, S., Zaki, K., ... & El-Seedi, H. R. (2019). Alpinia zerumbet (Pers.): Food and medicinal plant with potential in vitro and in vivo anti-cancer activities. Molecules, 24(13), 2495. DOI: 10.3390/molecules24132495

Zhang, H., Li, Y., Mi, J., Zhang, M., Wang, Y., Jiang, Z., & Hu, P. (2017) GC-MS profiling of volatile components in different fermentation products of Cordyceps Sinensis Mycelia. Molecules, 22(10), 1800. DOI: 10.3390/molecules22101800

Zhang, T., Guo, S., Zhu, X., Qiu, J., Deng, G., & Qiu, C. (2020). Alpinetin inhibits breast cancer growth by ROS/NF-κB/HIF-1α axis. Journal of Cellular and Molecular Medicine, 24(15), 8430-8440. DOI: 10.1111/jcmm.15371

Downloads

Published

2022-08-25

How to Cite

Kidruangphokin, M. ., Boonphong, S. ., Suphrom, N. ., Nabnian, T. ., & Piankarn, P. . (2022). Identification of volatile bioactive compounds from the pericarp and seed extracts of Alpinia mutica Roxb. by GC–MS analysis. Journal of Current Science and Technology, 12(2), 306–314. Retrieved from https://ph04.tci-thaijo.org/index.php/JCST/article/view/296

Issue

Section

Research Article