Identification of SARS-CoV-2 packaging signals via bacteria-based inhibition assay

Authors

  • Nattaporn Sripairoj Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
  • Chairat Tunghirun Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
  • Sarin Chimnaronk Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand

Keywords:

bacteria-based assay, coronavirus, nucleocapsid protein, packaging signal, SARS-CoV-2

Abstract

The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has damaged global public health. The nucleocapsid (N) protein of SARS-CoV-2 is the major viral RNA-binding protein that recognizes and binds to a specific sequence in the viral RNA genome, designated as a packaging signal (PS), and initiates viral genome packaging. However, the molecular details of the packaging mechanism and consensus on the PS sequence in the SARS-CoV-2 genome remain elusive. This study aims at development of a bacteria-based inhibition assay for measuring the interaction of N protein with viral RNA fragments in order to identify PS from SARS-CoV-2 genome. We initially conducted an unbiased bioinformatic analysis based on the conserved regions in both RNA sequence and secondary structure, and made predictions for three highly plausible packaging signal candidates (PSCs), referred to as PSC1, PSC2, and PSC3, within nucleotides 20,080 to 21,171 in the SARS-CoV-2 genome. These PSC cDNAs were fused with the downstream luciferase gene and introduced, along with the N protein expression plasmid, into the Lemo21 (DE3) Escherichia coli system. We carried out extensive optimization of the bacteria-based inhibition system and assessed the NPS interaction through the translational suppression of luciferase expression. The results showed over 70% inhibition of luciferase expression for PSC1 and PSC2 with both N proteins from SARS-CoV-1 and SARS-CoV-2, supporting our bioinformatic prediction. Our results provide a useful tool for further elucidating of the mechanism of viral genome packaging and for studying other RNAprotein interactions.

References

Bajema, K. L., Dahl, R. M., Prill, M. M., Meites, E., Rodriguez-Barradas, M. C., Marconi, V. C., Beenhouwer, D. O., Brown, S. T., Holodniy, M., & Lucero-Obusan, C. (2021). Effectiveness of COVID-19 mRNA Vaccines Against COVID-19–Associated Hospitalization—Five Veterans Affairs Medical Centers, United States, February 1–August 6, 2021. Morbidity and Mortality Weekly Report, 70(37), 1294-1299. DOI: https://doi.org/10.15585/mmwr.mm7037e3

Baudoux, P., Carrat, C., Besnardeau, L., Charley, B., & Laude, H. (1998). Coronavirus pseudoparticles formed with recombinant M and E proteins induce alpha interferon synthesis by leukocytes. Journal of virology, 72(11), 8636-8643. DOI: https://doi.org/10.1128/JVI.72.11.8636-8643.1998

Cates, J., Lucero-Obusan, C., Dahl, R. M., Schirmer, P., Garg, S., Oda, G., Hall, A. J., Langley, G., Havers, F. P., & Holodniy, M. (2020). Risk for in-hospital complications associated with COVID-19 and influenza—Veterans Health Administration, United States, October 1, 2018–May 31, 2020. Morbidity and Mortality Weekly Report, 69(42), 1528. DOI: https://doi.org/10.15585/mmwr.mm6942e3

Chang, C.-k., Hou, M.-H., Chang, C.-F., Hsiao, C.-D., & Huang, T.-h. (2014). The SARS coronavirus nucleocapsid protein–forms and functions. Antiviral research, 103, 39-50. DOI: https://doi.org/10.1016/j.antiviral.2013.12.009

Gruber, A. R., Findeiß, S., Washietl, S., Hofacker, I. L., & Stadler, P. F. (2010). RNAz 2.0: improved noncoding RNA detection. In Biocomputing 2010 (pp. 69-79). World Scientific.

Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., ... & Pöhlmann, S. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. cell, 181(2), 271-280. e278. DOI: https://doi.org/10.1016/j.cell.2020.02.052

Madeira, F., Park, Y. M., Lee, J., Buso, N., Gur, T., Madhusoodanan, N., ... & Lopez, R. (2019). The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic acids research, 47(W1), W636-W641. DOI: https://doi.org/10.1093/nar/gkz268

Meselson, M. (2020). Droplets and aerosols in the transmission of SARS-CoV-2. New England Journal of Medicine, 382(21), 2063-2063. DOI: https://doi.org/10.1056/NEJMc2009324

Molenkamp, R., & Spaan, W. J. (1997). Identification of a specific interaction between the coronavirus mouse hepatitis virus A59 nucleocapsid protein and packaging signal. Virology, 239(1), 78-86. DOI: https://doi.org/10.1006/viro.1997.8867

Mortola, E., & Roy, P. (2004). Efficient assembly and release of SARS coronavirus-like particles by a heterologous expression system. FEBS letters, 576(1-2), 174-178. DOI: https://doi.org/10.1016/j.febslet.2004.09.009

Naqvi, A. A. T., Fatima, K., Mohammad, T., Fatima, U., Singh, I. K., Singh, A., ... & Hassan, M. I. (2020). Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1866(10), 165878. DOI: https://doi.org/10.1016/j.bbadis.2020.165878

Perdikari, T. M., Murthy, A. C., Ryan, V. H., Watters, S., Naik, M. T., & Fawzi, N. L. (2020). SARS‐CoV‐2 nucleocapsid protein phase‐separates with RNA and with human hnRNPs. The EMBO journal, 39(24), e106478. DOI: https://doi.org/10.15252/embj.2020106478

Planas, D., Veyer, D., Baidaliuk, A., Staropoli, I., Guivel-Benhassine, F., Rajah, M. M., ... & Schwartz, O. (2021). Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature, 596(7871), 276-280. DOI: https://doi.org/10.1038/s41586-021-03777-9

Syed, A. M., Taha, T. Y., Tabata, T., Chen, I. P., Ciling, A., Khalid, M. M., ... & Doudna, J. A. (2021). Rapid assessment of SARS-CoV-2–evolved variants using virus-like particles. Science, 374(6575), 1626-1632. DOI: https://doi.org/10.1126/science.abl6184

Tilocca, B., Soggiu, A., Sanguinetti, M., Musella, V., Britti, D., Bonizzi, L., ... & Roncada, P. (2020). Comparative computational analysis of SARS-CoV-2 nucleocapsid protein epitopes in taxonomically related coronaviruses. Microbes and infection, 22(4-5), 188-194. DOI: https://doi.org/10.1016/j.micinf.2020.04.002

V’kovski, P., Kratzel, A., Steiner, S., Stalder, H., & Thiel, V. (2021). Coronavirus biology and replication: implications for SARS-CoV-2. Nature Reviews Microbiology, 19(3), 155-170. DOI: https://doi.org/10.1038/s41579-020-00468-6

Woo, J., Lee, E. Y., Lee, M., Kim, T., & Cho, Y.-E. (2019). An in vivo cell-based assay for investigating the specific interaction between the SARS-CoV N-protein and its viral RNA packaging sequence. Biochemical and biophysical research communications, 520(3), 499-506. DOI: https://doi.org/10.1016/j.bbrc.2019.09.115

World Health Organization. (2022). WHO Coronavirus (COVID-19) Dashboard. Retrived from https://covid19.who.int/

Wu, F., Zhao, S., Yu, B., Chen, Y. M., Wang, W., Song, Z. G., ... & Zhang, Y. Z. (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579(7798), 265-269. DOI: https://doi.org/10.1038/s41586-020-2008-3

Zhao, Q., Huang, H. C., Nagaswamy, U., Xia, Y., Gao, X., & Fox, G. E. (2012). UNAC tetraloops: to what extent do they mimic GNRA tetraloops?. Biopolymers, 97(8), 617-628. DOI: https://doi.org/10.1002/bip.22049

Downloads

Published

2022-08-25

How to Cite

Sripairoj, N. ., Tunghirun, C. ., & Chimnaronk, S. . (2022). Identification of SARS-CoV-2 packaging signals via bacteria-based inhibition assay. Journal of Current Science and Technology, 12(2), 297–305. Retrieved from https://ph04.tci-thaijo.org/index.php/JCST/article/view/294

Issue

Section

Research Article