In Situ Green Production of Silver Nanoparticles Utilizing Purple Corn Silk Extract for Multifunctional Healthcare Hemp Textiles

Authors

  • Pisutsaran Chitichotpanya Department of Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Pathum Thani 12120, Thailand
  • Nattaya Vuthiganond Department of Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Pathum Thani 12120, Thailand
  • Pimnara Chutasen The Newton Sixth Form School, Bangkok 10400, Thailand
  • Chayanisa Chitichotpanya Department of Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand & Center for Surface Science and Engineering, Faculty of Science, Mahidol University, Nakhon Pathom 73170, Thailand

DOI:

https://doi.org/10.59796/jcst.V16N1.2026.154

Keywords:

purple corn silk, anthocyanin, silver nanoparticle, hemp, antioxidant activity, UV-protection, antibacterial activity

Abstract

This study aimed to create multifunctional healthcare hemp fabrics employing a facile and cost-effective method. Multifunctional hemp was manufactured through in situ green synthesis of silver nanoparticles (AgNPs) employing an anthocyanin extract as both a reducing agent and functional colorant, due to the numerous health benefits linked to anthocyanins derived from purple corn silk (PCS), an agricultural byproduct. XRD and SEM-EDS analyses confirmed AgNP formation and uniform distribution on hemp fibers. The results demonstrated that dyebath pH significantly affected the perceived color, color strength (K/S), UV protection, and antioxidant and antibacterial activities. In an alkaline dyebath, more AgNPs were produced, improving K/S values, UV protection (UPF rating of 50+), and antibacterial efficiency against S. aureus and E. coli, with E. coli exhibiting better efficacy. However, an increase in AgNPs reduced the antioxidant capabilities of the treated fabrics. Overall, this study successfully demonstrated an economical and straightforward method for finishing hemp fabrics for multifunction healthcare textiles. PCS also contains a higher concentration of anthocyanins compared to other natural sources, rendering it an economical anthocyanin resource for textile businesses.

References

Abdallah, S. E., Elmessery, W. M., Elfallawi, F. E., & Shoueir, K. R. (2024). Utilizing agricultural biowaste for food safety: Integrating naturally synthesized silver nanoparticles as antibacterial coating. Inorganic Chemistry Communications, 163, Article 112337. https://doi.org/10.1016/j.inoche.2024.112337

Ahmed, T., & Ogulata, R. T. (2021). A review on silver nanoparticles-green synthesis, antimicrobial action and application in textiles. Journal of Natural Fibers, 19(14), 8463-8484. https://doi.org/10.1080/15440478.2021.1964135

Annamalai, J., Ummalyma, S. B., Pandey, A., & Bhaskar, T. (2021). Recent trends in microbial nanoparticle synthesis and potential application in environmental technology: a comprehensive review. Environmental Science and Pollution Research, 28(36), 49362-49382. https://doi.org/10.1007/s11356-021-15680-x

Attia, N. F., Osama, R., Elashery, S. E., Kalam, A., Al-Sehemi, A. G., & Algarni, H. (2022). Recent advances of sustainable textile fabric coatings for UV protection properties. Coatings, 12(10), Article 1597. https://doi.org/10.3390/coatings12101597

Balamurugan, M., Saravanan, S., & Soga, T. (2017). Coating of green-synthesized silver nanoparticles on cotton fabric. Journal of Coatings Technology and Research, 14(3), 735-745. https://doi.org/10.1007/s11998-016-9894-1

Banupriya, J., & Priyanka, A. (2018). Application of ultraviolet protection finish on tencel cotton fabric using carica papaya. Smartex Fashion, 18, 141-146.

Barani, H., & Mahltig, B. (2020). Using microwave irradiation to catalyze the in-situ manufacturing of silver nanoparticles on cotton fabric for antibacterial and UV-protective application. Cellulose, 27(15), 9105-9121. https://doi.org/10.1007/s10570-020-03400-6

Burdușel, A. C., Gherasim, O., Grumezescu, A. M., Mogoantă, L., Ficai, A., & Andronescu, E. (2018). Biomedical applications of silver nanoparticles: An up-to-date overview. Nanomaterials, 8(9), Article 681. https://doi.org/10.3390/nano8090681

Chang, L., Duan, W., Huang, S., Chen, A., Li, J., Tang, H., ... & Li, D. (2021). Improved antibacterial activity of hemp fibre by covalent grafting of quaternary ammonium groups. Royal Society Open Science, 8(3), Article 201904. https://doi.org/10.1098/rsos.201904

Chitichotpanya, P., & Chitichotpanya, C. (2017). In vitro assessment of sericin-silver functionalized silk fabrics for enhanced UV protection and antibacterial properties using experimental design. Coatings, 7(9), Article 145. https://doi.org/10.3390/coatings7090145

Chitichotpanya, P., Vuthiganond, N., Inprasit, T., & Chutasen, P. (2024). Bioactive and multifunctional wool textiles finishing with diospyros mollis griff. extract. Journal of Current Science and Technology, 14(1), Article 3. https://doi.org/10.59796/jcst.V14N1.2024.3

Čuk, N., Šala, M., & Gorjanc, M. (2021). Development of antibacterial and UV protective cotton fabrics using plant food waste and alien invasive plant extracts as reducing agents for the in-situ synthesis of silver nanoparticles. Cellulose, 28(5), 3215-3233. https://doi.org/10.1007/s10570-021-03715-y

Dhaka, A., Mali, S. C., Sharma, S., & Trivedi, R. (2023). A review on biological synthesis of silver nanoparticles and their potential applications. Results in Chemistry, 6, Article 101108. https://doi.org/10.1016/j.rechem.2023.101108

El Bourakadi, K., Semlali, F. Z., Hammi, M., & El Achaby, M. (2024). A review on natural cellulose fiber applications: Empowering industry with sustainable solutions. International Journal of Biological Macromolecules, 281(2), Article 135773. https://doi.org/10.1016/j.ijbiomac.2024.135773

Gao, D., Liu, J., Lyu, L., Li, Y., Ma, J., & Baig, W. (2020). Construct the multifunction of cotton fabric by synergism between nano ZnO and Ag. Fibers and Polymers, 21(3), 505-512. https://doi.org/10.1007/s12221-020-9347-4

Gulati, R., Sharma, S., & Sharma, R. K. (2022). Antimicrobial textile: recent developments and functional perspective. Polymer Bulletin, 79(8), 5747-5771. https://doi.org/10.1007/s00289-021-03826-3

Huq, M. A., Ashrafudoulla, M., Rahman, M. M., Balusamy, S. R., & Akter, S. (2022). Green synthesis and potential antibacterial applications of bioactive silver nanoparticles: A review. Polymers, 14(4), Article 742. https://doi.org/10.3390/polym14040742

Ijaz, M., Zafar, M., & Iqbal, T. (2020). Green synthesis of silver nanoparticles by using various extracts: A review. Inorganic and Nano-Metal Chemistry, 51(5), 744-755. https://doi.org/10.1080/24701556.2020.1808680

Jain, A., Kongkham, B., Puttaswamy, H., Butola, B. S., Malik, H. K., & Malik, A. (2022). Development of wash-durable antimicrobial cotton fabrics by in situ green synthesis of silver nanoparticles and investigation of their antimicrobial efficacy against drug-resistant bacteria. Antibiotics, 11(7), Article 864. https://doi.org/10.3390/antibiotics11070864

Jaswal, T., & Gupta, J. (2023). A review on the toxicity of silver nanoparticles on human health. Materials Today: Proceedings, 81, 859-863. https://doi.org/10.1016/j.matpr.2021.04.266

Jiang, H., Guo, R., Mia, R., Zhang, H., Lü, S., Yang, F., ... & Liu, H. (2022). Eco-friendly dyeing and finishing of organic cotton fabric using natural dye (gardenia yellow) reduced-stabilized nanosilver: Full factorial design. Cellulose, 29(4), 2663-2679. https://doi.org/10.1007/s10570-021-04401-9

Khadem, E., & Kharaziha, M. (2022). Red cabbage anthocyanin-functionalized tannic acid-silver nanoparticles with pH sensitivity and antibacterial properties. Materials Chemistry and Physics, 291, Article 126689. https://doi.org/10.1016/j.matchemphys.2022.126689

Khan, B. A., Warner, P., & Wang, H. (2014). Antibacterial properties of hemp and other natural fibre plants: A review. BioResources, 9(2), 3642-3659. https://doi.org/10.15376/biores.9.2.Khan

Kibria, G., Repon, M. R., Hossain, M. F., Islam, T., Jalil, M. A., Aljabri, M. D., & Rahman, M. M. (2022). UV-blocking cotton fabric design for comfortable summer wears: Factors, durability and nanomaterials. Cellulose, 29(14), 7555-7585. https://doi.org/10.1007/s10570-022-04710-7

Kim, H. Y., Lee, K. Y., Kim, M., Hong, M., Deepa, P., & Kim, S. (2023). A review of the biological properties of purple corn (Zea mays L.). Scientia Pharmaceutica, 91(1), 6. https://doi.org/10.3390/scipharm91010006

Klaykruayat, B., Vuthiganond, N., & Chitichotpanya, P. (2024). Optimization of ultrasound-assisted anthocyanin extraction from agricultural waste purple corn silk for multifunctional hemp finishes. Journal of Metals, Materials and Minerals, 34(4), 2027-2027. https://doi.org/10.55713/jmmm.v34i4.2027

Klaykruayat, B., Vuthiganond, N., & Chitichotpanya, P. (2025). Optimization of ultrasound-assisted anthocyanin extraction from black rice bran for simultaneous coloring, UV protection, and antioxidant silk finishes. Journal of Current Science and Technology, 15(1), Article 86. https://doi.org/10.59796/jcst.V15N1.2025.86

Koul, B., Yakoob, M., & Shah, M. P. (2022). Agricultural waste management strategies for environmental sustainability. Environmental Research, 206, Article 112285. https://doi.org/10.1016/j.envres.2021.112285

Kumar, K., Srivastav, S., & Sharanagat, V. S. (2021). Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrasonics Sonochemistry, 70, Article 105325. https://doi.org/10.1016/j.ultsonch.2020.105325

Le, X. T., Huynh, M. T., Pham, T. N., Than, V. T., Toan, T. Q., Bach, L. G., & Trung, N. Q. (2019). Optimization of total anthocyanin content, stability and antioxidant evaluation of the anthocyanin extract from Vietnamese Carissa carandas L. fruits. Processes, 7(7), Article 468. https://doi.org/10.3390/pr7070468

Li, D., & Sun, Y. (2024). Using gardenia pigment for ultrasonic natural dyeing of hemp fiber: A step towards sustainable dyeing. Industrial Crops and Products, 222, Article 119528. https://doi.org/10.1016/j.indcrop.2024.119528

Liao, C., Li, Y., & Tjong, S. C. (2019). Bactericidal and cytotoxic properties of silver nanoparticles. International Journal of Molecular Sciences, 20(2), Article 449. https://doi.org/10.3390/ijms20020449

Libanori, A., Chen, G., Zhao, X., Zhou, Y., & Chen, J. (2022). Smart textiles for personalized healthcare. Nature Electronics, 5(3), 142-156. https://doi.org/10.1038/s41928-022-00723-z

Maneewattanapinyo, P., Pichayakorn, W., Monton, C., Dangmanee, N., Wunnakup, T., & Suksaeree, J. (2023). Effect of ionic liquid on silver-nanoparticle-complexed Ganoderma applanatum and its topical film formulation. Pharmaceutics, 15(4), Article 1098. https://doi.org/10.3390/pharmaceutics15041098

Monika, P., Chandraprabha, M. N., Hari Krishna, R., Vittal, M., Likhitha, C., Pooja, N., ... & C, M. (2024). Recent advances in pomegranate peel extract mediated nanoparticles for clinical and biomedical applications. Biotechnology and Genetic Engineering Reviews, 40(4), 3379-3407. https://doi.org/10.1080/02648725.2022.2122299

Neciosup-Puican, A. A., Pérez-Tulich, L., Trujillo, W., & Parada-Quinayá, C. (2024). Green synthesis of silver nanoparticles from anthocyanin extracts of Peruvian purple potato INIA 328 Kulli Papa. Nanomaterials, 14(13), Article 1147. https://doi.org/10.3390/nano14131147

Nie, P., Zhao, Y., & Xu, H. (2023). Synthesis, applications, toxicity and toxicity mechanisms of silver nanoparticles: A review. Ecotoxicology and Environmental Safety, 253, Article 114636. https://doi.org/10.1016/j.ecoenv.2023.114636

Noga, M., Milan, J., Frydrych, A., & Jurowski, K. (2023). Toxicological aspects, safety assessment, and green toxicology of silver nanoparticles (AgNPs) critical review: State of the art. International Journal of Molecular Sciences, 24(6), Article 5133. https://doi.org/10.3390/ijms24065133

Rajaboopathi, S., & Thambidurai, S. (2018). Evaluation of UPF and antibacterial activity of cotton fabric coated with colloidal seaweed extract functionalized silver nanoparticles. Journal of Photochemistry and Photobiology B: Biology, 183, 75-87. https://doi.org/10.1016/j.jphotobiol.2018.04.028

Rehan, M., Elshemy, N. S., Haggag, K., Montaser, A. S., & Ibrahim, G. E. (2020). Phytochemicals and volatile compounds of peanut red skin extract: Simultaneous coloration and in situ synthesis of silver nanoparticles for multifunctional viscose fibers. Cellulose, 27(17), 9893-9912. https://doi.org/10.1007/s10570-020-03452-8

Rehan, M., Ibrahim, G. E., Mashaly, H. M., Hasanin, M., Rashad, H. G., & Mowafi, S. (2022). Simultaneous dyeing and multifunctional finishing of natural fabrics with Hibiscus flowers extract. Journal of Cleaner Production, 374, Article 133992. https://doi.org/10.1016/j.jclepro.2022.133992

Rehman, M., Fahad, S., Du, G., Cheng, X., Yang, Y., Tang, K., ... & Deng, G. (2021). Evaluation of hemp (Cannabis sativa L.) as an industrial crop: A review. Environmental Science and Pollution Research, 28(38), 52832-52843. https://doi.org/10.1007/s11356-021-16264-5

Roy, S., & Rhim, J. W. (2021). Anthocyanin food colorant and its application in pH-responsive color change indicator films. Critical Reviews in Food Science and Nutrition, 61(14), 2297-2325. https://doi.org/10.1080/10408398.2020.1776211

Sadeghi-Kiakhani, M., Tehrani-Bagha, A. R., Safapour, S., Eshaghloo-Galugahi, S., & Etezad, S. M. (2021). Ultrasound-assisted extraction of natural dyes from Hawthorn fruits for dyeing polyamide fabric and study its fastness, antimicrobial, and antioxidant properties. Environment, Development and Sustainability, 23(6), 9163-9180. https://doi.org/10.1007/s10668-020-01017-0

Sánchez, G. R., Castilla, C. L., Gómez, N. B., García, A., Marcos, R., & Carmona, E. R. (2016). Leaf extract from the endemic plant Peumus boldus as an effective bioproduct for the green synthesis of silver nanoparticles. Materials Letters, 183, 255-260. https://doi.org/10.1016/j.matlet.2016.07.115

Sasunthon, N., Laksee, S., & Pisitsak, P. (2025). Preparation of hemp fabrics with durable UV‐protective and antibacterial properties using silver nanoparticles. Journal of Nanotechnology, 2025(1), Article 9695944. https://doi.org/10.1155/jnt/9695944

Schumacher, A. G. D., Pequito, S., & Pazour, J. (2020). Industrial hemp fiber: A sustainable and economical alternative to cotton. Journal of Cleaner Production, 268, Article 122180. https://doi.org/10.1016/j.jclepro.2020.122180

Simončič, B., & Klemenčič, D. (2016). Preparation and performance of silver as an antimicrobial agent for textiles: A review. Textile Research Journal, 86(2), 210-223. https://doi.org/10.1177/0040517515586157

Srisod, S., Motina, K., Inprasit, T., & Pisitsak, P. (2018). A green and facile approach to durable antimicrobial coating of cotton with silver nanoparticles, whey protein, and natural tannin. Progress in Organic Coatings, 120, 123-131. https://doi.org/10.1016/j.porgcoat.2018.03.007

Suhag, R., Kumar, R., Dhiman, A., Sharma, A., Prabhakar, P. K., Gopalakrishnan, K., ... & Singh, A. (2023). Fruit peel bioactives, valorisation into nanoparticles and potential applications: A review. Critical Reviews in Food Science and Nutrition, 63(24), 6757-6776. https://doi.org/10.1080/10408398.2022.2043237

Tat, T., Chen, G., Zhao, X., Zhou, Y., Xu, J., & Chen, J. (2022). Smart textiles for healthcare and sustainability. ACS Nano, 16(9), 13301-13313. https://doi.org/10.1021/acsnano.2c06287

Vasyliev, G., & Vorobyova, V. (2020). Valorization of food waste to produce eco‐friendly means of corrosion protection and “green” synthesis of nanoparticles. Advances in Materials Science and Engineering, 2020(1), Article 6615118. https://doi.org/10.1155/2020/6615118

Velmurugan, P., Kim, J. I., Kim, K., Park, J. H., Lee, K. J., Chang, W. S., ... & Oh, B. T. (2017). Extraction of natural colorant from purple sweet potato and dyeing of fabrics with silver nanoparticles for augmented antibacterial activity against skin pathogens. Journal of Photochemistry and Photobiology B: Biology, 173, 571-579. https://doi.org/10.1016/j.jphotobiol.2017.07.001

Yin, Y., Jia, J., Wang, T., & Wang, C. (2017). Optimization of natural anthocyanin efficient extracting from purple sweet potato for silk fabric dyeing. Journal of Cleaner Production, 149, 673-679. https://doi.org/10.1016/j.jclepro.2017.02.134

Yu, Z., He, H., Liu, J., Li, Y., Lin, X., Zhang, C., & Li, M. (2020). Simultaneous dyeing and deposition of silver nanoparticles on cotton fabric through in situ green synthesis with black rice extract. Cellulose, 27(3), 1829-1843. https://doi.org/10.1007/s10570-019-02910-2

Yu, Z., Liu, J., He, H., Wang, Y., Zhao, Y., Lu, Q., ... & Peng, Y. (2021). Green synthesis of silver nanoparticles with black rice (Oryza sativa L.) extract endowing carboxymethyl chitosan modified cotton with high anti-microbial and durable properties. Cellulose, 28(3), 1827-1842. https://doi.org/10.1007/s10570-020-03639-z

Downloads

Published

2025-12-20

How to Cite

Chitichotpanya, P., Vuthiganond, N. ., Chutasen, P. ., & Chitichotpanya, C. . (2025). In Situ Green Production of Silver Nanoparticles Utilizing Purple Corn Silk Extract for Multifunctional Healthcare Hemp Textiles. Journal of Current Science and Technology, 16(1), 154. https://doi.org/10.59796/jcst.V16N1.2026.154