Rainfall intensity analysis for radar rainfall evaluation in the composite area of Takhli and Sattahip radar

Main Article Content

Ratchawatch Hanchoowong
Siwa Kaewplang

Abstract

This study collected data on a total of 510 rain events between February 2018 and November 2020. It includes hourly rainfall data (R) from 238 ground-based automated telemetry stations and radar reflectivity data (Z) under a measurement radius of 240 km from Takhli and Sattahip radars. The Z-R relationships of Takhli radar and Sattahip radar were determined and applied to evaluate radar rainfall intensity in the composite area of these radars. The radar rainfall intensity in the composite area was analyzed using five methods: the rainfall intensity from (1) Z = 138R1.6 (only Takhli radar), (2) Z = 170R1.6 (only Sattahip radar), and the composite rainfall intensity from (3) Z = 200R1.6 (Marshall and Plamer), (4) Z = 300R1.6 (Woodley and Herndon), and (5) Z = 138R1.6 and Z = 170R1.6 (Takhli and Sattahip radar). These results were compared with the ground-based station data to determine the best method for evaluation based on the least statistical values, i.e., Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and BIAS. The results show that the composite results from Takhli and Sattahip radar were the most accurate, and this case can increase the accuracy compared to the 1st to 4th method by 22.26%, 10.25%, 3.89%, and 18.02% of the RMSE; 29.75%, 23.14%, 14.88%, and 14.88% of the MAE; and 361.54%, 42.31%, 100.00%, and 369.23% of the BIAS value, respectively.

Article Details

How to Cite
1.
Hanchoowong R, Kaewplang S. Rainfall intensity analysis for radar rainfall evaluation in the composite area of Takhli and Sattahip radar. Ag Bio Eng [internet]. 2025 Dec. 29 [cited 2026 Jan. 11];3(1):13-21. available from: https://ph04.tci-thaijo.org/index.php/abe/article/view/12150
Section
Original Articles
Author Biography

Ratchawatch Hanchoowong, Department of Civil Engineering, School of Engineering and Industrial Technology, Mahanakorn University of Technology, Bangkok 10530

Teacher

References

Morin E, Gabella M. Radar-based quantitative precipitation estimation over Mediterranean and dry climate regimes. J Geophys Res. 2007;112:D20108. https://doi.org/10.1029/2006JD008206.

Einfalt T, Arnbjergnielsen K, Golz C, Jensen N, Quirmbach M, Vaes G, Vieux B.Towards a roadmap for use of radar rainfall data in urban drainage. J Hydrol. 2004;299(3-4):186–202. https://doi.org/10.1016/S0022-1694(04)00365-8.

Gires A, Tchiguirinskaia I, Schertzer D, Schellart A, Berne A, Lovejoy S. Influence of small scale rainfall variability on standard comparison tools between radar and rain gauge data. Atmos Res. 2014;138:125–38. https://doi.org/10.1016/j.atmosres.2013.11.008.

Hou J, Wang NA, Guo K, Li D, Jing H, Wang T, Hinkelmann R. Effects of the temporal resolution of storm data on numerical simulations of urban flood inundation. J Hydrol. 2020;589:125100. https://doi.org/10.1016/j.jhydrol.2020.125100.

Ochoa-Rodriguez S, Wang LP, Gires A, Pina RD, Reinoso-Rondinel R, Bruni G, Ichiba A, Gaitan S, Cristiano E, van Assel J, Kroll S, Murl`a-Tuyls D, Tisserand B, Schertzer D, Tchiguirinskaia I, Onof C, Willems P. Veldhuis MC. Impact of spatial and temporal resolution of rainfall inputs on urban hydrodynamic modelling outputs: A multi-catchment investigation. J Hydrol. 2015;531:389–407. https://doi.org/10.1016/j.jhydrol.2015.05.035.

Thorndahl S, Einfalt T, Willems P, Nielsen JE, ten Veldhuis MC, Arnbjerg-Nielsen K, Rasmussen MR, Molnar P. Weather radar rainfall data in urban hydrology. Hydrol Earth Syst Sci. 2017;21(3):1359–80. https://doi.org/10.5194/hess-21-1359-2017.

Kumjian MR. Principles and applications of dual-polarization weather radar. Part I: Description of the polarimetric radar variables. J Oper Meteorol. 2013;1(19):226–42. https://doi.org/10.15191/nwajom.2013.0119.

Kaiser M, Günnemann S, Disse M. Spatiotemporal analysis of heavy rain-induced flood occurrences in Germany using a novel event database approach. J Hydrol. 2021;595:125985. https://doi.org/10.1016/j.jhydrol.2021.125985.

Mobini S, Nilsson E, Persson A, Becker P, Larsson R. Analysis of pluvial flood damage costs in residential buildings–A case study in Malmo. Int J Disaster Risk Reduct. 2021;62:102407. https://doi.org/10.1016/j.ijdrr.2021.102407.

Marshall J S, Palmer WMK. The Distribution of raindrops with size. Journal of Meteorology. 1984;5(4):165-6. https://doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2.

Mapiam PP, Sriwongsitanon N. Climatological Z-R relationship for radar rainfall estimation in the upper Ping river basin. ScienceAsia. 2008;34:215-22. https://doi.org/10.2306/scienceasia1513-1874.2008.34.215.

Hanchoowong R, Weesakul U, Chumchean S. Bias correction of radar rainfall estimates based on a geostatistical technique. ScienceAsia. 2012;38:373-85. https://doi.org/10.2306/scienceasia1513-1874.2012.38.373.

Chantraket P, Detyothin C, Pankaew S. Kirtsaeng S. An operational weather radar-based calibration of Z–R relationship over Central Region of Thailand. Int J Eng. 2016;2:92–100.

Wang LP, Ochoa-Rodríguez S, Van Assel J, Pina RD, Pessemier M, Kroll S, Willems P, Onof C. Enhancement of radar rainfall estimates for urban hydrology through optical flow temporal interpolation and Bayesian gauge based adjustment. J Hydrol. 2015;531:408-26. https://doi.org/10.1016/j.jhydrol.2015.05.049.

Hanchoowong R. Analysis of the Z-R equation for use in estimating rainfall of the Takhli radar. Journal of Engineering and Innovation. 2022;15(4):172-83.

Michelson D, Einfalt T, Holleman I, Gjertsen U, Friedrich K, Haase G, Lindskog M, Sztuc, J. Weather radar data quality in Europe: Quality control and characterization, COST 717 Working Document WDF_20_200204_1. 2004.

Hydro & meteo GmbH & Co. KG. SCOUT Documentation Version 3.32. Hydro & meteo GmbH & Co. KG., Germany. 2016.

Battan LJ. Radar observation of the atmosphere. The University of Chicago Press. 1973:324.

Chumchean S. Improved estimation of radar rainfall for use in hydrological modelling. Ph.D. Thesis, University of New South Wales, Sydney, Australia. 2004.

Delrieu G, Andrieu H, Creutin JD. Quantification of path-integrated attenuation for X-and C-band weather radar systems operating in Mediterranean heavy rainfall. J Appl Meteor. 2000;39(6):840-50. https://doi.org/10.1175/1520-0450(2000)039<0840:QOPIAF>2.0.CO;2.

Futon RA, Breidenbach JP, Seo DJ, Miller DA, O’Brannon T. The WSD–88D rainfall algorithm. Weather Forecasting. 1998;13:377-95. https://doi.org/10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2.

Austin PM. Relation between measured radar reflectivity and surface rainfall. Monthly Weather 520 Review. 1987;115:1053-70. https://doi.org/10.1175/1520-0493(1987)115<1053:RBMRRA>2.0.CO;2.

Williams CR, Ecklund WL, Gage KS. Classification of precipitating clouds in the tropics using 915-MHz wind profilers. J Atmos Oceanic Technol. 1995;12(5):996-1012. https://doi.org/10.1175/1520-0426(1995)012<0996:COPCIT>2.0.CO;2.

Atlas D, Ulbrich CW, Marks Jr FD, Amitai E, Williams CR. Systematic variation of drop size and radar‐rainfall relations. J Geophys Res. 1999;104(D6):6155-69. https://doi.org/10.1029/1998JD200098.

Harrison DL, Driscoll SJ, Kitchen M. Improving precipitation estimates from weather radar using quality control and correction techniques. Meteorol Appl. 2000;6:135–44. https://doi.org/10.1017/S1350482700001468.

Mapiam P, Sriwongsitanon N, Chumchean S, Sharma A. Effects of rain gauge temporal resolution on the specification of a Z-R relationship. J Atmos Oceanic Technol. 2009;26:1302-14. https://doi.org/10.1175/2009JTECHA1161.1.

Mapiam P, Sharma A, Sriwongsitanon N. Defining the Z–R relationship using gauge rainfall with coarse temporal resolution: implications for flood forecasting. J Hydrol Eng. 2014;19(8):04114003. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000616.

Woodley W, Herndon A. A raingage evaluation of the Miami reflectivity-rainfall rate relation. J Appl Meteor. 1970;9(2):258-64. https://doi.org/10.1175/1520-0450(1970)009<0258:AREOTM>2.0.CO;2.

Kitchen M, Brown R, Davies AG. Real-time correction of weather radar data for the effects of bright band, range and orographic growth in widespread precipitation. QJ Roy Meteorol Soc. 1994;120:1231-54. https://doi.org/10.1256/smsqj.51905.

Seo DJ. Real-time estimation of rainfall fields using radar rainfall and rain gage data. J Hydrol. 1998;208:37–52. https://doi.org/10.1016/S0022-1694(98)00141-3.

Chumchean S, Sharma A, Seed A. An integrated approach to error correction for real-time radar-rainfall estimation. J Atmos Ocean Tech. 2006;23:67–79. https://doi.org/10.1175/JTECH1832.1.

Rabiei E, Haberlandt U. Applying bias correction for merging rain gauge and radar data. J Hydrol. 2015;522:544-57. https://doi.org/10.1016/j.jhydrol.2015.01.020.

Kim J, Yoo C. Using extended Kalman filter for real-time decision of parameters of Z-R relationship. Journal of Korea Water Resources Association. 2014;47(2). https://doi.org/10.3741/JKWRA.2014.47.2.119.

Einfalt T, Lobbrecht A, Leung K, Lempio G. Preparation and evaluation of a Dutch-German radar composite to enhance precipitation information in border areas. J Hydrol Eng. 2012;18(2). https://doi.org/10.1061/(ASCE)HE.1943-5584.0000649.

Einfalt T, Lobbrecht A. Compositing international radar data using a weight-based scheme. Weather Radar and Hydrology. Proceedings of a symposium held in Exeter, UK, April 2011. IAHS Publ. 2012;351:20-5.

Jurczyk A, Szturc J, Osródka K. Quality-based compositing of weather radar derived precipitation. QJ Roy Meteorol Soc. 2020;17(1):1-14. https://doi.org/10.1002/met.1812.

Lempio G, Einfalt T, Lobbrecht A. Considerations for compositing radar data from three countries. Weather Radar and Hydrology ERAD 2012 - The Seventh European Conference on Radar in Meteology and Hydrology, ERAD 2012. 2012.

Nielsen JE, Thorndahl S, Rasmussen MR. Improving weather radar precipitation estimates by combining two types of radars. Atmos Res. 2014;139:36-45. https://doi.org/10.1016/j.atmosres.2013.12.013.

Lengfeld K, Clemens M, Münster H, Ament F. Performance of high-resolution X-band weather radar networks–the PATTERN example. Atmos. Meas. Tech. 2014;7(12):4151–66. https://doi.org/10.5194/amt-7-4151-2014.

Lengfeld K, Clemens M, Merker C, Münster H, Ament F. A simple method for attenuation correction in local X-band radar measurements using C-band radar data. J Atmos Oceanic Tech. 2016;33(11):2315–29. https://doi.org/10.1175/JTECH-D-15-0091.1.

Hosseini SH, Hashemi H, Berndtsson R, South N, Aspegren H, Larsson R, Olsson J, Persson A, Olsson L. Evaluation of a new X-band weather radar for operational use in south Sweden. Water Sci Technol. 2020;81(8):1623–35. https://doi.org/10.2166/wst.2020.066