การวิเคราะห์เลือกเครื่องพิมพ์ 3 มิติ โดยใช้เทคนิคลำดับชั้นเชิงวิเคราะห์ฟัซซี่และเทคนิคเรียงลำดับตามอุดมคติ : กรณีศึกษาชิ้นงานการแพทย์

ผู้แต่ง

  • พีระพัฒน์ คำหงษ์ ภาควิชาวิศวกรรมอุตสาหการ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยอุบลราชธานี จังหวัดอุบลราชธานี ประเทศไทย
  • กสิณ รังสิกรรพุม ภาควิชาวิศวกรรมอุตสาหการ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยอุบลราชธานี จังหวัดอุบลราชธานี ประเทศไทย

คำสำคัญ:

การเลือกเครื่องพิมพ์สามมิติ, กระบวนการลำดับชั้นเชิงวิเคราะห์ฟัซซี่, เทคนิคเรียงลำดับตามอุดมคติ, โมเดลชิ้นงานการแพทย์

บทคัดย่อ

เทคโนโลยีการผลิตแบบเพิ่มขึ้น หรือการผลิตแบบพิมพ์สามมิติ (3DP) ได้รับความนิยมอย่างแพร่หลายมากขึ้นในปัจจุบัน ทำให้มีตัวเลือกของเครื่อง 3DP เป็นจำนวนมาก งานวิจัยนี้เป็นการศึกษาและวิเคราะห์ปัญหาการเลือกเครื่องพิมพ์แบบสามมิติภายใต้หลายปัจจัยด้วยเทคนิคกระบวนการลำดับชั้นเชิงวิเคราะห์ฟัซซี่ร่วมกับเทคนิคเรียงลำดับตามอุดมคติ โดยมีปัจจัยหลักที่พิจารณา ได้แก่ ปัจจัยด้านผลิตภัณฑ์ ด้านวัตถุดิบ และด้านเครื่องพิมพ์ ซึ่งประกอบไปด้วยปัจจัยย่อยรวม 11 ปัจจัย ได้แก่ ความแม่นยำ ความเรียบผิว ต้นทุนชิ้นงาน เวลาในการผลิต ความสวยงาม ราคาวัสดุ ค่าแรงดึง ค่าความยืดหยุ่น ราคาเครื่องพิมพ์ ขนาดที่พิมพ์ได้สูงสุด และความน่าใช้ของเครื่อง โดยทำการวิเคราะห์กลุ่มผู้ตัดสินใจจากผู้เชี่ยวชาญและผู้ใช้เครื่อง ผลการวิจัย พบว่า ปัจจัยด้านผลิตภัณฑ์เป็นปัจจัยที่สำคัญที่สุด ตามด้วยปัจจัยวัตถุดิบและด้านเครื่องพิมพ์ โดยมีค่าน้ำหนักเท่ากับ 0.528 0.298 และ 0.173 ตามลำดับ นอกจากนี้ พบว่า ทางเลือกเครื่องพิมพ์ที่ดีที่สุดที่ได้ในกรณีศึกษานี้ นอกจากจะขึ้นกับประเภทชิ้นงานทางการแพทย์ที่ใช้ในการผลิตแล้ว ยังขึ้นกับปัจจัยที่นำมาพิจารณา โดยทางเลือกเครื่องพิมพ์ที่ดีที่สุดในด้านปัจจัยผลิตภัณฑ์ คือ เครื่อง SLA Ultra 3SP ซึ่งมีจุดเด่นในด้านความแม่นยำ และความน่าใช้ ส่วนทางเลือกเครื่องพิมพ์ที่ดีที่สุดในด้านปัจจัยวัตถุดิบและด้านปัจจัยเครื่องพิมพ์ คือ เครื่อง FDM XYZ 3DP daVinci1.0A และเครื่อง FDM Flashforge Guider2s ตามลำดับ

References

Wohlers, T., 2018, Wohlers Report 2018, Wohlers Associates, Inc.: Fort Collins, USA, 343 p.

3D Hubs., 2020, “3D Printing Trends 2020 Industry Highlights and Market Trends [Online], Available: http://www.3dhubs.com/. [15 November 2020]

Ransikarbum, K., Ha, S., Ma, J. and Kim, N., 2017, “Multi-Objective Optimization Analysis for Part-to-Printer Assignment in a Network of 3D Fused Deposition Modeling,” Journal of Manufacturing Systems, 43 (1), pp. 35-46.

Ransikarbum, K. and Kim, N., 2017, “Data Envelopment Analysis-based Multi-Criteria Decision Making for Part Orientation Selection in Fused Deposition Modeling,” 4th IEEE International Conference on Industrial Engineering and Applications (ICIEA), April, pp. 81-85.

Ha, S., Ransikarbum, K., Han, H., Kwon, D., Kim, H. and Kim, N., 2018, “A Dimensional Compensation Algorithm for Vertical Bending Deformation of 3D Printed Parts in Selective Laser Sintering,” Rapid Prototyping Journal, 24 (6), pp. 955-963.

Ransikarbum, K., Pitakaso, R. and Kim, N., 2019, “Evaluation of Assembly Part Build Orientation in Additive Manufacturing Environment using Data Envelopment Analysis,” MATEC Web of Conferences, EDP Sciences, December, Tokyo, Japan, p. 293.

Zhao, Y., Dong, X. and Zhao, X, 2016, “3D Printing Technology and its Development Trend,” 2016 International Forum on Energy, Environment and Sustainable Development, Atlantis Press. pp. 684-688.

Petersen, E.E. and Pearce, J., 2017, “Emergence of Home Manufacturing in the Developed World: Return on Investment for Open-source 3-D Printers,” Technologies, 5 (1), p. 7.

Yuan, Y., 2020, “Research Status and Development Trend of 3D Printing Technology,” IOP Conference Series: Materials Science and Engineering, 711 (1), pp. 012014.

Ransikarbum, K., Pitakaso, R. and Kim, N., 2020, “A Decision-Support Model for Additive Manufacturing Scheduling Using an Integrative Analytic Hierarchy Process and Multi-Objective Optimization,” Applied Sciences, 10 (1), p. 5159.

Wisetla, K. and Ransikarbum, K., 2020, “Process Planning in FDM 3D-Printed Acrylonitrile-Butadiene-Styrene Using Integrative DEA and TOPSIS,” Journal of Science and Technology, Ubon Ratchathani University, 22 (1), pp. 22-32. (In Thai).

Ramola, M., Yadav, V. and Jain, R., 2019, “On the Adoption of Additive Manufacturing in Healthcare: A Literature Review,” Journal of Manufacturing Technology Management, 30 (1), pp. 48-69.

Trenfield, S.J., Awad, A., Madla, C.M., Hatton, G.B., Firth, J., Goyanes, A. and Basit, A.W., 2019, “Shaping the Future: Recent Advances of 3D Printing in Drug Delivery and Healthcare,” Expert Opinion on Drug Delivery, 16 (10), pp. 1081-1094.

Ransikarbum, K., 2020, “Multi-Criteria Decision Analysis-based Orientation Selection Problem for Integrated 3D Printing and Subtractive Manufacturing,” The Journal of Industrial Technology, 16 (1), pp. 15-30. (In Thai).

Ransikarbum, K. and Kim, N., 2017, “Multi-Criteria Selection Problem of Part Orientation in 3D Fused Deposition Modeling based on Analytic Hierarchy Process Model: A Case Study,” 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), December, Singapore, pp. 1455 – 1459.

Ransikabum, K., Yingviwatanapong, C., Leksomboon, R., Wajanavisit, T. and Bijaphala, N., 2019, “Additive Manufacturing-based Healthcare 3D Model for Education: Literature Review and A Feasibility Study,” IEEE Research, Invention, and Innovation Congress (RI2C), December, Bangkok, Thailand, pp. 1-6.

Duangkam, P. and Jeamjiroj, K., 2019, “The Effect of Speed and Energy Density on Temperature Distribution for Nylon Powder 618-s in Powder Stereoscopic Printer,” Journal of Engineering Ubon Ratchathani University, 11 (2), pp. 89-99. (In Thai).

Prateepsawangvong, B., 2018, “Using Reverse Engineering in Computer Numerical Control and Rapid Prototyping Technology in Restorative Dentistry,” Chiang Mai Dental Clinic Journal, 39 (2), pp. 13-29. (In Thai).

Jamróz, W., Szafraniec, J., Kurek, M. and Jachowicz, R., 2018, “3D Printing in Pharmaceutical and Medical Applications–recent Achievements and Challenge,” Pharmaceutical Research, 35 (1), p. 176.

AlAli, A.B., Griffin, M.F. and Butler, P.E., 2015, “Three-dimensional Printing Surgical Applications,” Eplasty, p. 15.

Kornsopa, S., Wudi, N. and Mahasaranon, S., 2017, “Development of a Cylindrical Head and Neck Model with a 3D Printer for Radiographic Inspection in Radiotherapy,” Songkhla Nakarin Vejsarn Journal, 35 (4), pp. 351-360. (In Thai).

Gatto, M., Memoli, G. Shaw, A., Sadhoo, N., Gelat, P. and Harris, R. A., 2012, “Three-Dimensional Printing (3DP) of Neonatal Head Phantom for Ultrasound: Thermocouple Embedding and Simulation of Bone,” Medical Engineering and Physics, 34 (7), pp. 929-937.

Di Prima, M., Coburn, J., Hwang, D., Kelly, J., Khairuzzaman, A. and Ricles, L., 2016, “Additively Manufactured Medical Products–the FDA Perspective,” 3D printing in Medicine, 2 (1), pp. 1-6.

The Biomedical 3D Printing Community [Online], Available: https://www.embodi3d.com/about-us/ [May 15, 2020]

Shende, V. and Kulkarni, P., 2014, “Decision Support System for Rapid Prototyping Process Selection,” International Journal of Scientific and Research Publications, 4 (1), pp. 1-6.

Jadhav, M.D. and Agrawal, R. K., 2016, “Application of Reverse Engineering (RE) for Different Rapid Prototyping Techniques (RP) and its Comparative Analysis,” International Journal of Engineering Trends and Technology, 39 (1), pp. 94-98.

Sureeyatanapas, P., Waleekhajornlert, N., Arunyanart, S. and Niyamosoth, T., 2020, “Resilient Supplier Selection in Electronic Components Procurement: An Integration of Evidence Theory and Rule-Based Transformation into TOPSIS to Tackle Uncertain and Incomplete Information,” Symmetry, 12 (7), p.1109.

Sriwattananusart, K. and Sureeyatanapas, P., 2017, “Supplier Selection Using TOPSIS and ROC Methods : A Case Study of Restaurant Industry,” KMUTT Research and Development Journal, 40 (3), pp. 385-403. (In Thai)

Luenam, P., 2013, “Prioritized Factors Using Fuzzy Analytic Hierarchy Process: Understanding Concepts And Its Application,” Modern Management Journal, 11 (1), pp. 1-12. (In Thai)

Leunam, P., 2013, “Criteria Prioritization with Fuzzy Analytical Hierarchy Process: Concepts and Applications,” Journal of Modern Management, 11 (1), pp. 1-12. (In Thai).

Metaxiotis, K., Psarras, J. and Samouilidis, E., 2003, “Integrating Fuzzy Logic into Decision Support Systems: Current Research and Future Prospects,” Information Management and Computer Security, 11 (2), pp. 53-59.

Khamhong, P., Yingviwatanapong, C. and Ransikarbum, K., 2019, “Fuzzy Analytic Hierarchy Process (AHP)-based Criteria Analysis for 3D Printer Selection in Additive Manufacturing,” 2019 IEEE Research, Invention, and Innovation Congress (RI2C), December, Bangkok, Thailand, pp. 1-5.

Sonvisut, A., 2016, “Multiple Criteria Decision Making: Comparison of Concepts and Methods between SAW, AHP, and TOPSIS,” Journal of Narathiwat Rajanagarindra University, 8 (2), pp. 180-192. (In Thai).

Roberson, D.A., Espalin, D. and Wicker, R.B., 2013, “3D Printer Selection: A Decision-making Evaluation and Ranking Model,” Virtual and Physical Prototyping, 8 (3), pp. 201-212.

Prabhu, S.R. and Ilangkumaran, M., 2019, “Selection of 3D Printer Based on FAHP Integrated with GRA-TOPSIS,” International Journal of Materials and Product Technology, 58 (2-3), pp. 155-177.

Ishizaka, A. and Labib, A., 2011, “Review of the Main Developments in the Analytic Hierarchy Process,” Expert systems with applications, 38 (11), pp. 14336-14345.

Downloads

เผยแพร่แล้ว

2021-03-31

How to Cite

คำหงษ์ พ., & รังสิกรรพุม ก. (2021). การวิเคราะห์เลือกเครื่องพิมพ์ 3 มิติ โดยใช้เทคนิคลำดับชั้นเชิงวิเคราะห์ฟัซซี่และเทคนิคเรียงลำดับตามอุดมคติ : กรณีศึกษาชิ้นงานการแพทย์. Science and Engineering Connect, 44(1), 61–80. สืบค้น จาก https://ph04.tci-thaijo.org/index.php/SEC/article/view/10358