Image-Based Characterization and Statistical Optimization of Silver Nanoparticles Biosynthesized Using Pasteurized Milk

Authors

  • Tarit Apisittiwong Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand & Food Processing Pilot Plant, College of Agricultural Innovation and Food Technology, Rangsit University, PathumThani 12000, Thailand
  • Nuttawan Yoswathana Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
  • Vinod K Jindal Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand

DOI:

https://doi.org/10.59796/jcst.V15N4.2025.134

Keywords:

silver nanoparticles (AgNPs), green synthesis, pasteurized milk, central composite design (CCD), UV-vis spectroscopy, surface plasmon resonance (SPR), colloidal stability, digital imaging, light scattering

Abstract

Background: Green synthesis of silver nanoparticles (AgNPs) has garnered attention for its sustainability, yet few studies have integrated digital imaging for nanoparticle characterization. Objective: This study aimed to synthesize AgNPs using pasteurized milk as a natural reducing and stabilizing agent, and to optimize synthesis conditions using a rotatable central composite design (CCD), coupled with spectroscopic and image-based analytical methods. Methods: AgNPs were synthesized under varying conditions of milk dilution, AgNO₃ concentration, and reaction time. Response variables - SPR wavelength, absorbance, particle size, and imaging-derived parameters (∆RGB, ∆Lab, MGL) were modeled using second-order polynomial regression. Digital imaging under forward, backward, and transmitted light geometries were used to quantify nanoparticle-induced optical changes. Results: Most models showed high predictive power (adjusted R² > 0.80), with image-based variables (∆RGB, ∆ASM, MGL) strongly correlated with particle concentration and optical density. Optimal conditions (milk:DI 1:15, 2.00 mM AgNO₃, 2 h) yielded AgNPs with a strong SPR response (412 nm), small size (95.8 nm), and distinct visual signatures. Predicted responses matched closely with experimental data, validating the model. Conclusion: This study presents a reproducible, low-cost platform for sustainable AgNP synthesis. The incorporation of digital imaging enhances real-time monitoring and offers promising applications in diagnostics, food safety, and green nanotechnology.

References

Asif, M., Yasmin, R., Asif, R., Ambreen, A., Mustafa, M., & Umbreen, S. (2022). Green synthesis of silver nanoparticles (AgNPs), structural characterization, and their antibacterial potential. Dose-response, 20(2). https://doi.org/10.1177/15593258221088709

Baltasar Sánchez, A., & González Sistal, Á. (2014). A quantitative method for the characterization of lytic metastases of the bone from radiographic images. The Scientific World Journal, 2014(1), Article 264836. https://doi.org/10.1155/2014/264836

Changsan, N., Atipairin, A., Sakdiset, P., Muenraya, P., Balekar, N., Srichana, T., Sritharadol, R., Phanapithakkun, S., & Sawatdee, S. (2024). BrSPR-20-P1 peptide isolated from Brevibacillus sp. developed into liposomal hydrogel as a potential topical antimicrobial agent. RSC Advances, 14(42), 27394–27411. https://doi.org/10.1039/D4RA03722G

Dangsaart, B., Boonyarattanakalin, K., Bangbai, C., Sungthong, A., & Chongsri, K. (2024). Enhanced optical and photocatalytic properties of Ag NPs decorated-ZnO composites. Thai Journal of Nanoscience and Nanotechnology, 9(2), 1-10.

Dubey, S. P., Lahtinen, M., Särkkä, H., & Sillanpää, M. (2010). Bioprospective of Sorbus aucuparia leaf extract in development of silver and gold nanocolloids. Colloids and Surfaces B: Biointerfaces, 80(1), 26-33. https://doi.org/10.1016/j.colsurfb.2010.05.024

Elmegdar, S., Elkheloui, R., Laktib, A., Mimouni, R., & Hamadi, F. (2024). Antibiofilm and anti-quorum sensing activities of biological nanoparticles. Current Applied Science and Technology, 24(2), e0257479-e0257479. https://doi.org/10.55003/cast.2023.257479

Elumalai, A., & Navabshan, I. (2024). Fabrication of silver nanoparticles using acalypha paniculata extract, AI-based interaction analysis and its activity explication. Natural and Life Sciences Communications, 23(3), Article e2024035. https://doi.org/10.12982/NLSC.2024.035

Fu, Y. H., Kuznetsov, A. I., Miroshnichenko, A. E., Yu, Y. F., & Luk’yanchuk, B. (2013). Directional visible light scattering by silicon nanoparticles. Nature Communications, 4(1), Article 1527. https://doi.org/10.1038/ncomms2538

Irwan, I., Zulfahmi, I., & Nurliza, E. (2024). Green synthesis of silver nanoparticles using ulva intestinalis with cytotoxic and antioxidant activity. Science & Technology Asia, 29(3), 315-325.

Kelly, K. L., Coronado, E., Zhao, L. L., & Schatz, G. C. (2003). The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. The Journal of Physical Chemistry B, 107(3), 668-677. https://doi.org/10.1021/jp026731y

Krishnaraj, C., Jagan, E. G., Rajasekar, S., Selvakumar, P., Kalaichelvan, P. T., & Mohan, N. (2010). Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids and Surfaces B: Biointerfaces, 76(1), 50–56. https://doi.org/10.1016/j.colsurfb.2009.10.008

Lee, K. J., Park, S. H., Govarthanan, M., Hwang, P. H., Seo, Y. S., Cho, M., ... & Oh, B. T. (2013). Synthesis of silver nanoparticles using cow milk and their antifungal activity against phytopathogens. Materials Letters, 105, 128-131. https://doi.org/10.1016/j.matlet.2013.04.076

Li, B., Chua, S. L., Yu, D., Chan, S. H., & Li, A. (2022). Detection, identification and size distribution of silver nanoparticles (AgNPs) in milk and migration study for breast milk storage bags. Molecules, 27(8), Article 2539. https://doi.org/10.3390/molecules27082539

Maneewattanapinyo, P., Pichayakorn, W., Monton, C., Dangmanee, N., Wunnakup, T., & Suksaeree, J. (2023). Effect of ionic liquid on silver-nanoparticle-complexed Ganoderma applanatum and its topical film formulation. Pharmaceutics, 15(4), Article 1098. https://doi.org/10.3390/pharmaceutics15041098

Martin, M. M., & Sumayao Jr, R. E. (2022). Facile green synthesis of silver nanoparticles using Rubus Rosifolius Linn aqueous fruit extracts and its characterization. Applied Science and Engineering Progress, 15(3), 5511-5511. https://doi.org/10.14416/j.asep.2021.10.011

Pandey, S., De Klerk, C., Kim, J., Kang, M., & Fosso-Kankeu, E. (2020). Eco friendly approach for synthesis, characterization and biological activities of milk protein stabilized silver nanoparticles. Polymers, 12(6), Article 1418. https://doi.org/10.3390/polym12061418

Rechberger, W., Hohenau, A., Leitner, A., Krenn, J. R., Lamprecht, B., & Aussenegg, F. R. (2003). Optical properties of two interacting gold nanoparticles. Optics communications, 220(1-3), 137-141. https://doi.org/10.1016/S0030-4018(03)01357-9

Simatupang, C., Jindal, V. K., & Jindal, R. (2021). Biosynthesis of silver nanoparticles using orange peel extract for application in catalytic degradation of methylene blue dye. Environment and Natural Resources Journal, 19(6), 468-480. https://doi.org/10.32526/ennrj/19/202100088

Subavathy, P., & Grace, G. A. J. (2023). Biogenic synthesis, characterization and applications of Tellurium nanoparticles from Chicoreus virgineus (Roding, 1798). Journal of Current Science and Technology, 13(2), 237-250. https://doi.org/10.59796/jcst.V13N2.2023.1742

Sukmongkolwongs, C., Sawasiticher, P., & Wutticharoenmongkol, P. (2024). Electrospun cellulose acetate nanofibers containing Clinacanthus nutans (Phayayo) crude extract as potential wound dressings. Journal of Current Science and Technology, 14(1), Article 7. https://doi.org/10.59796/jcst.V14N1.2024.7

Suknicom, S., & Borompichaichartkul, C. (2021). Stability and phase behavior of fish oil emulsion containing konjac glucomannan in goat milk systems. Journal of Current Science and Technology, 11(3), 392-401. https://doi.org/10.14456/jcst.2021.39

Thamilselvi, V., & Radha, K. V. (2017). Silver nanoparticle loaded silica adsorbent for wastewater treatment. Korean Journal of Chemical Engineering, 34(6), 1801-1812. https://doi.org/10.1007/s11814-017-0075-4

Thongwattana, T., Chaiyo, R., Ponsanti, K., Tangnorawich, B., Pratumpong, P., Toommee, S., ... & Pechyen, C. (2024). Synthesis of silver nanoparticles and gold nanoparticles used as biosensors for the detection of human serum albumin-diagnosed kidney disease. Pharmaceuticals, 17(11), Article 1421. https://doi.org/10.3390/ph17111421

Downloads

Published

2025-09-20

How to Cite

Apisittiwong, T., Yoswathana, N., & K Jindal, V. (2025). Image-Based Characterization and Statistical Optimization of Silver Nanoparticles Biosynthesized Using Pasteurized Milk. Journal of Current Science and Technology, 15(4), 134. https://doi.org/10.59796/jcst.V15N4.2025.134

Issue

Section

Research Article

Categories