Chessboard-coding Metasurface Antennas with Binary Defects for Anomalous Radiation: Novel and Continuous Development

Authors

  • Tanatorn Tantipiriyakul College of Computing, Prince of Songkla University Phuket Campus, Phuket 83120, Thailand
  • Komsan Kanjanasit College of Computing, Prince of Songkla University Phuket Campus, Phuket 83120, Thailand

DOI:

https://doi.org/10.59796/jcst.V15N4.2025.135

Keywords:

chessboard-coding metasurface, binary coding defects, beamforming radiation, phase discontinuities, metasurface antennas

Abstract

This paper presents a numerical analysis of chessboard-coding metasurface antennas, focusing on the impact of binary coding defects on beamforming radiation characteristics. Chessboard-coding metasurface antennas, composed of 1-bit unit cells with binary phase distributions (0° and 180°), enable near-field wavefront control for beam steering applications. Beam tilting is achieved by introducing binary defects, which break phase continuity and affect radiation performance. This study investigates a planar antenna and examines the effects of binary defects in metasurface unit cells by analyzing reflection characteristics, impedance variations, and radiation patterns at 9 GHz. Twelve defect configurations are simulated to observe beam tilting and distortion patterns, revealing a strong dependence on defect location. The spatial distribution of defects within the metasurface lattice is categorized into inner and outer regions, according to their impact on beam characteristics. Numerical results show that binary defects can redirect beams in both azimuth and elevation. The defective cell locations in the 5 × 5 chessboard pattern reveal symmetric beam shifts in azimuth (0°, ±50°, ±110°, and ±137°) and elevation (+17.5° and +22.5°), with antenna gains ranging from 4.1 to 5.3 dBi compared to a 5.57 dBi baseline. Impedance bandwidths are observed approximately within the 8.4–9.5 GHz range. These findings offer valuable design insights for developing robust, reconfigurable metasurface antennas suited for next-generation 6G communication systems operating in the centimeter-wave band.

References

Ansys Inc. (2024). Ansys HFSS – Student Version [Computer software]. Ansys Inc. Retrieved from https://www.ansys.com/academic/students

Balanis, C. A. (2005). Babinet’s principle. In Antenna Theory: Analysis and Design (3rd ed.). Hoboken, NJ: John Wiley & Sons.

Cui, T. J., Li, L., Liu, S., Ma, Q., Zhang, L., Wan, X., ... & Cheng, Q. (2020). Information metamaterial systems. Iscience, 23(8), Article 101403. https://doi.org/10.1016/j.isci.2020.101403

Cui, T. J., Liu, S., & Li, L. L. (2016). Information entropy of coding metasurface. Light: Science & Applications, 5(11), Article e16172. https://doi.org/10.1038/lsa.2016.172

Cui, T. J., Qi, M. Q., Wan, X., Zhao, J., & Cheng, Q. (2014). Coding metamaterials, digital metamaterials and programmable metamaterials. Light: Science & Applications, 3(10), Article e218. https://doi.org/10.1038/lsa.2014.99

Dassault Systèmes. (2024). CST Studio Suite – Student Edition [Computer software]. Dassault Systèmes. Retrieved from https://www.3ds.com/edu/education/students/solutions/cst-le

Feresidis, A. P., Goussetis, G., Wang, S., & Vardaxoglou, J. C. (2005). Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas. IEEE Transactions on Antennas and Propagation, 53(1), 209-215. https://doi.org/10.1109/TAP.2004.840528

Galarregui, J. C. I., Pereda, A. T., De Falcon, J. L. M., Ederra, I., Gonzalo, R., & De Maagt, P. (2013). Broadband radar cross-section reduction using AMC technology. IEEE Transactions on Antennas and Propagation, 61(12), 6136-6143. https://doi.org/10.1109/TAP.2013.2282915

Kanjanasit, K., Osklang, P., Jariyanorawiss, T., Boonpoonga, A., & Phongcharoenpanich, C. (2023). Artificial magnetic conductor as planar antenna for 5G evolution. Computers, Materials & Continua, 74(1). 503–522. https://doi.org/10.32604/cmc.2023.032427

Ma, Q., Xiao, Q., Hong, Q. R., Gao, X., Galdi, V., & Cui, T. J. (2022). Digital coding metasurfaces: From theory to applications. IEEE Antennas and Propagation Magazine, 64(4), 96-109. https://doi.org/10.1109/MAP.2022.3169397

Rahman, M. M., Yang, Y., & Dey, S. (2025). Application of metamaterials in antennas for gain improvement: A study on integration techniques and performance. IEEE Access, 13, 49489 – 49503. https://doi.org/10.1109/ACCESS.2025.3552023

Selvaraj, M., Vijay, R., & Anbazhagan, R. (2025). Reflective metasurface for 5G & beyond wireless communications. Scientific Reports, 15(1), Article 126. https://doi.org/10.1038/s41598-024-84523-9

Sheng, L. L., Cao, W. P., Mei, L. R., & Yu, X. H. (2022). A novel low‐cost beam‐controlling antenna based on digital coding metasurface. International Journal of RF and Microwave Computer‐Aided Engineering, 32(6), Article e23152. https://doi.org/10.1002/mmce.23152

Simons, R. N. (2001). Coplanar waveguide short circuit. In Coplanar Waveguide Circuits, Components, and Systems. (1st Ed). New York, NY: Wiley-Interscience.

Tantipiriyakul, T., & Kanjanasit, K. (2023). Design and simulation of chessboard coding wave artifacts. Journal of Information Science and Technology, 13(2), 62-68. https://doi.org/10.14456/jist.2023.13

Tantipiriyakul, T., & Kanjanasit, K. (2024). A Binary Hexagon Stripe Metamaterial Antenna [Conference presentation]. 2024 21st International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). IEEE, Khon Kaen, Thailand. https://doi.org/10.1109/ECTI-CON60892.2024.10594859

Testolina, P., Polese, M., & Melodia, T. (2024). Sharing spectrum and services in the 7–24 ghz upper midband. IEEE Communications Magazine, 62(8), 170-177. https://doi.org/10.1109/MCOM.001.2400086

Vinod, G. V., & Khairnar, V. V. (2024). A wideband beam steering and beamwidth reconfigurable antenna using coding metasurface. IEEE Access, 12, 97143–97153. https://doi.org/10.1109/ACCESS.2024.3427707

Wang, S., Xu, H. X., Wang, M., & Tang, S. (2024). A low-RCS, high-gain and polarization-insensitive FP antenna combing frequency selective rasorber and metasurface. IEEE Open Journal of Antennas and Propagation, 5(6), 1623–1628. https://doi.org/10.1109/OJAP.2024.3426624

Xue, J., Jiang, W., & Gong, S. (2017). Chessboard AMC surface based on quasi-fractal structure for wideband RCS reduction. IEEE Antennas and Wireless Propagation Letters, 17(2), 201-204. https://doi.org/10.1109/LAWP.2017.2780085

Zhang, L., & Cui, T. J. (2021). Space-time-coding digital metasurfaces: Principles and applications. Research. 2021, Article 9802673. https://doi.org/10.34133/2021/9802673

Zhang, L., Wan, X., Liu, S., Yin, J. Y., Zhang, Q., Wu, H. T., & Cui, T. J. (2017). Realization of low scattering for a high-gain Fabry–Perot antenna using coding metasurface. IEEE Transactions on Antennas and Propagation, 65(7), 3374-3383. https://doi.org/10.1109/TAP.2017.2700874

Downloads

Published

2025-09-20

How to Cite

Tantipiriyakul, T., & Kanjanasit, K. (2025). Chessboard-coding Metasurface Antennas with Binary Defects for Anomalous Radiation: Novel and Continuous Development. Journal of Current Science and Technology, 15(4), 135. https://doi.org/10.59796/jcst.V15N4.2025.135