Isolation and Characterization of Lytic Pseudomonas fluorescens Bacteriophage isolated from milk


  • Rinratree Wongyoo Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
  • Sirinthorn Sunthornthummas National Biobank of Thailand (NBT), National Science and Technology Development Agency, Pathum Thani, Thailand 12120
  • Komwit Surachat Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand 90110 & Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand 90110
  • Thassanant Atithep Frontier Research Center (FRC) Vidyasirimedhi Institute of Science and Technology (VISTEC). Wangchan Valley, Rayong, Thailand 21210
  • Achariya Rangsiruji Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
  • Siriruk Sarawaneeyaruk Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
  • Onanong Pringsulaka Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand



P. fluorescens, bacteriophage, biocontrol


Phage-based biocontrol is an alternative method for preventing and controlling the occurrence of Pseudomonas spp. in food products. However, the use of bacteriophages to control heat-stable protease Pseudomonas fluorescens is still rare. The objectives of this study were to isolate lytic bacteriophages of P. fluorescens, and to evaluate their efficacy in controlling P. fluorescens at the laboratory level. Among these strains, only one phage, ΦTIS1, was isolated by using P. fluorescens TISTR 1887 as the host. Further analysis using electron microscopy indicated that ΦTIS1 belongs to the Myoviridae family. This phage ΦTIS1 was relatively stable at pH and temperature ranges of 4.0 to 12.0 and 4, 30, 37, and 45°C, respectively, after 1.5 h incubation. The partial ΦTIS1 genome was a linear double-stranded with a total length of 87,646 bp and a G + C content of 54.71%. In vitro studies of the effect of bacteriophages against P. fluorescens TISTR 1887 with phage ΦTIS1 using various multiplicity of infection (MOI) values showed a significant decrease in bacterial numbers during 6-12 hours of incubation, followed by bacterial regrowth. However, the phage was still able to significantly reduce the bacterial numbers compared to the control without phage. These findings suggest that phage ΦTIS1 has the potential to be an effective method for controlling the prevalence of spoilage-causing P. fluorescens strains in dairy industries.


Abedon, S. T., Danis-Wlodarczyk, K. M., & Wozniak, D. J. (2021). Phage cocktail development for bacteriophage-based biocontrol: toward improving spectrum of activity breadth and depth. Pharmaceuticals, 14(10), 1019.

Ackermann, H. W. (1999). Tailed bacteriophage: the order Caudovirales. Advances in Virus Research, 51, 135-201. 10.1016/S0065-3527(08)60785-X

Adams, M. H. (1959). Bacteriophages. New York, US: Interscience Publishers.

Amarillas, L., Rubi-Rangel, L., Chaidez, C., Gonzalez-Robles, A., Lightbourn-Rojas, L., & Leon-Felix, J. (2017). Isolation and characterization of phiLLS, a novel phage with potential biocontrol agent against multidrug-resistant. Escherichia coli. Frontiers in Microbiology, 8, 1355.

Andreani, N. A., Carraro, L., Fasolato, L., Balzan, S., Lucchini, R., Novelli, E., & Cardazzo, B. (2016). Characterisation of the thermostable protease AprX in strains of Pseudomonas fluorescens and impact on the shelf-life of dairy products: Preliminary results. Italian journal of food safety, 5(4), 239-244.

Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., ... & Pevzner, P. A. (2012). SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology, 19(5), 455-477.

Baur, C., Krewinkel, M., Kranz, B., von Neubeck, M., Wenning, M., Scherer, S., ... & Fischer, L. (2015). Quantification of the proteolytic and lipolytic activity of microorganisms isolated from raw milk. International Dairy Journal, 49, 23-29.

Caballero, A. R., Moreau, J. M., Engel, L. E., Marquart, M. E., Hill, J. M., & O'Callaghan, R. J. (2001). Pseudomonas aeruginosa protease IV enzyme assays and comparison to other Pseudomonas proteases. Analytical Biochemistry, 290(2), 330-337.

Carrascosa, C., Millán, R., Jaber, J. R., Lupiola, P., del Rosario-Quintana, C., Mauricio, C., & Sanjuán, E. (2015). Blue pigment in fresh cheese produced by Pseudomonas fluorescens. Food Control, 54, 95-102.

Chopin, M. C., Chopin, A., & Roux, C. (1976). Definition of bacteriophage groups according to their lytic action on mesophilic lactic streptococci. Applied and Environmental Microbiology, 32(6), 741-746. aem.32.6.741-746.1976

Chumsen, J., Phumkhachorn, P., Chaiwong, T., Lulitanond, V., & Panya, M. (2020). Isolation and characterization of lytic bacteriophages against multidrug resistant Escherichia coli. Journal of Current Science and Technology, 10(1), 41-48.

Diallo, K., & Dublanchet, A. (2022). Benefits of combined phage–antibiotic therapy for the control of antibiotic-resistant bacteria: a literature review. Antibiotics, 11(7), 839.

do Nascimento, E. C., Sabino, M. C., da Roza Corguinha, L., Targino, B. N., Lange, C. C., de Oliveira Pinto, C. L., ... & Hungaro, H. M. (2022). Lytic bacteriophages UFJF_PfDIW6 and UFJF_PfSW6 prevent Pseudomonas fluorescens growth in vitro and the proteolytic-caused spoilage of raw milk during chilled storage. Food Microbiology, 101, 103892.

Eller, M. R., Vidigal, P. M., Salgado, R. L., Alves, M. P., Dias, R. S., da Silva, C. C., ... & De Paula, S. O. (2014). UFV-P2 as a member of the Luz24likevirus genus: a new overview on comparative functional genome analyses of the LUZ24-like phages. BMC Genomics, 15, 1-10.

Fricker, M., Skånseng, B., Rudi, K., Stessl, B., & Ehling-Schulz, M. (2011). Shift from farm to dairy tank milk microbiota revealed by a polyphasic approach is independent from geographical origin. International Journal of Food Microbiology, 145, 24-30.

Glück, C., Rentschler, E., Krewinkel, M., Merz, M., von Neubeck, M., Wenning, M., ... & Fischer, L. (2016). Thermostability of peptidases secreted by microorganisms associated with raw milk. International Dairy Journal, 56, 186-197.

Grant, J. R., & Stothard, P. (2008). The CGView Server: a comparative genomics tool for circular genomes. Nucleic Acids Research, 36(2), W181-W184.

Guerreiro, P. K., Machado, M. R. F., Braga, G. C., Gasparino, E., & Franzener, A. S. M. (2005). Microbiological quality of milk through preventive techniques in the handling of production. Ciencia E Agrotecnologia, 29, 216–222.

Guttman, B., Raya, R., & Kutter, E. (2005). Bacteriophages: biology and applications. Boca Raton, FL.: CRC Press.

Hungaro, H. M., Vidigal, P. M. P., do Nascimento, E. D., da Costa Oliveira, F. G., Gontijo, M. T. P., & Lopez, M. E. S. (2022). Genomic characterisation of UFJF_PfDIW6: a novel lytic Pseudomonas fluorescens-phage with potential for biocontrol in the dairy industry. Viruses, 14(3), Article 629.

Hu, Z., Meng, X. C., & Liu, F. (2016). Isolation and characterisation of lytic bacteriophages against Pseudomonas spp., a novel biological intervention for preventing spoilage of raw milk. International Dairy Journal, 55, 72-78.

Jamal, M., Hussain, T., Das, C. R., & Andleeb, S. (2015). Characterization of Siphoviridae phage Z and studying its efficacy against multidrug-resistant Klebsiella pneumoniae planktonic cells and biofilm. Journal of Medical Microbiology, 64(4), 454-462.

Jepson, C. D., & March, J. B. (2004). Bacteriophage lambda is a highly stable DNA vaccine delivery vehicle. Vaccine, 22, 2413–2419.

Loc-Carrillo, C., & Abedon, S. (2011). Pros and cons of phage-based biocontrol. Bacteriophage, 1(2), 111-114.

Machado, S. G., Baglinière, F., Marchand, S., Van Coillie, E., Vanetti, M. C. D., De Block, J., & Heyndrickx, M. (2017). The biodiversity of the microbiota producing heat-resistant enzymes responsible for spoilage in processed bovine milk and dairy products. Frontiers in Microbiology, 8, 1-22.

Marchand, S., De Block, J., De Jonghe, V., Coorevits, A., Heyndrickx, M., & Herman, L. (2012). Biofilm formation in milk production and processing environments; influence on milk quality and safety. Comprehensive Reviews in Food Science and Food Safety, 11(2), 133-147.

Marchand, S., Vandriesche, G., Coorevits, A., Coudijzer, K., De Jonghe, V., Dewettinck, K., ... & De Block, J. (2009). Heterogeneity of heat-resistant proteases from milk Pseudomonas species. International Journal of Food Microbiology, 133(1-2), 68-77.

Martin, N. H., Murphy, S. C., Ralyea, R. D., Wiedmann, M., & Boor, K. J. (2011). When cheese gets the blues: Pseudomonas fluorescens as the causative agent of cheese spoilage. Journal of Dairy Science, 94(6), 3176-3183.

Martins, M. L., Pinto, U. M., Riedel, K., & Vanetti, M. C. D. (2015). Milk-deteriorating exoenzymes from Pseudomonas fluorescens 041 isolated from refrigerated raw milk. Brazilian Journal of Microbiology, 46, 207-217.

Meng, L., Zhang, Y., Liu, H., Zhao, S. H., Wang, J., & Zheng, N. (2017). Characterization of Pseudomonas spp. and associated proteolytic properties in raw milk stored at low temperatures. Frontiers in Microbiology, 8, Article 2158.

Oechslin, F. (2018). Resistance development to bacteriophages occurring during bacteriophage-based biocontrol. Viruses, 10(7), 351.

Pirisi, A. (2000). Phage therapy—advantages over antibiotics?. Lancet, 356, Article number 1418.

Pringsulaka, O., Patarasinpaiboon, N., Suwannasai, N., Atthakor, W., & Rangsiruji, A. (2011). Isolation and characterisation of a novel Podoviridae-phage infecting Weissella cibaria N 22 from Nham, a Thai fermented pork sausage. Food Microbiology, 28(3), 518-525.

Reichler, S. J., Trmcic, A., Martin, N. H., Boor, K. J., & Wiedmann, M. (2018). Pseudomonas fluorescens group bacterial strains are responsible for repeat and sporadic postpasteurization contamination and reduced fluid milk shelf life. Journal of Dairy Science, 101(9), 7780-7800.

Sambrook, J., Fritsch, E. R., & Maniatis, T. (1989). Molecular cloning: a laboratory manual. 2nd ed. New York, US: Cold Spring Harbor.

Sillankorva, S., Neubauer, P., & Azeredo, J. (2008). Isolation and characterization of a T7-like lytic phage for Pseudomonas fluorescens. BMC biotechnology, 8(1), 1-11. https://doi:10.1186/1472-6750-8-80

Silva, Y. J., Costa, L., Pereira, C., Cunha, Â., Calado, R., Gomes, N., & Almeida, A. (2014). Influence of environmental variables in the efficiency of phage-based biocontrol in aquaculture. Microbial Biotechnology, 7(5), 401–413.

Sulakvelidze, A., Alavidze, Z., & Morris, J. G., Jr. (2001). Bacteriophage therapy. Antimicrobial Agents and Chemotherapy, 45(3), 649 – 659.

Sunthornthummas, S., Doi, K., Rangsiruji, A., Sarawaneeyaruk, S., & Pringsulaka, O. (2017). Isolation and characterization of Lactobacillus paracasei LPC and phage ΦT25 from fermented milk. Food Control, 73(8), 1353-1361.

Svensson, V., & Christiansson, A. (1991). Methods for phage monitoring. FIL-IDF Bulletin, 263, 29-39.

Tanaka, C., Yamada. K., Takeuchi, H., Inokuchi, Y., Kashiwagi, A., & Toba, T. (2018). A lytic bacteriophage for controlling Pseudomonas lactis in raw cow’s milk. Applied and Environmental Microbiology, 84(18), 1-11.

Thiel, K. (2004). Old dogma, new tricks—21st century phage therapy. Nature biotechnology, 22(1), 31-36.

von Neubeck, M., Baur, C., Krewinkel, M., Stoeckel, M., Kranz, B., Stressler, T., ... & Wenning, M. (2015). Biodiversity of refrigerated raw milk microbiota and their enzymatic spoilage potential. International Journal of Food Microbiology, 211, 57-65.

Wang, L., & Jayarao, B. M. (2001). Phenotypic and genotypic characterization of Pseudomonas fluorescens isolated from bulk tank milk. Journal of Dairy Science, 84(6), 1421-1429.

Zhang, D., Palmer, J., Teh, K. H., Calinisan, M. M. A., & Flint, S. (2020). Milk fat influences proteolytic enzyme activity of dairy Pseudomonas species. International Journal of Food Microbiology, 320, Article 108543.




How to Cite

Wongyoo, R. ., Sunthornthummas, S. ., Surachat, K. ., Atithep, T. ., Rangsiruji, A. ., Sarawaneeyaruk, S. ., & Pringsulaka, O. (2023). Isolation and Characterization of Lytic Pseudomonas fluorescens Bacteriophage isolated from milk. Journal of Current Science and Technology, 13(2), 428–442.



Research Article