Isolation and Characterization of Lytic Pseudomonas fluorescens Bacteriophage isolated from milk

Authors

  • Rinratree Wongyoo Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
  • Sirinthorn Sunthornthummas National Biobank of Thailand (NBT), National Science and Technology Development Agency, Pathum Thani, Thailand 12120
  • Komwit Surachat Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand 90110 & Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand 90110
  • Thassanant Atithep Frontier Research Center (FRC) Vidyasirimedhi Institute of Science and Technology (VISTEC). Wangchan Valley, Rayong, Thailand 21210
  • Achariya Rangsiruji Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
  • Siriruk Sarawaneeyaruk Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
  • Onanong Pringsulaka Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand

DOI:

https://doi.org/10.59796/jcst.V13N2.2023.885

Keywords:

P. fluorescens, bacteriophage, biocontrol

Abstract

Phage-based biocontrol is an alternative method for preventing and controlling the occurrence of Pseudomonas spp. in food products. However, the use of bacteriophages to control heat-stable protease Pseudomonas fluorescens is still rare. The objectives of this study were to isolate lytic bacteriophages of P. fluorescens, and to evaluate their efficacy in controlling P. fluorescens at the laboratory level. Among these strains, only one phage, ΦTIS1, was isolated by using P. fluorescens TISTR 1887 as the host. Further analysis using electron microscopy indicated that ΦTIS1 belongs to the Myoviridae family. This phage ΦTIS1 was relatively stable at pH and temperature ranges of 4.0 to 12.0 and 4, 30, 37, and 45°C, respectively, after 1.5 h incubation. The partial ΦTIS1 genome was a linear double-stranded with a total length of 87,646 bp and a G + C content of 54.71%. In vitro studies of the effect of bacteriophages against P. fluorescens TISTR 1887 with phage ΦTIS1 using various multiplicity of infection (MOI) values showed a significant decrease in bacterial numbers during 6-12 hours of incubation, followed by bacterial regrowth. However, the phage was still able to significantly reduce the bacterial numbers compared to the control without phage. These findings suggest that phage ΦTIS1 has the potential to be an effective method for controlling the prevalence of spoilage-causing P. fluorescens strains in dairy industries.

References

Abedon, S. T., Danis-Wlodarczyk, K. M., & Wozniak, D. J. (2021). Phage cocktail development for bacteriophage-based biocontrol: toward improving spectrum of activity breadth and depth. Pharmaceuticals, 14(10), 1019. https://doi.org/10.3390/ph14101019

Ackermann, H. W. (1999). Tailed bacteriophage: the order Caudovirales. Advances in Virus Research, 51, 135-201. https://doi.org/ 10.1016/S0065-3527(08)60785-X

Adams, M. H. (1959). Bacteriophages. New York, US: Interscience Publishers.

Amarillas, L., Rubi-Rangel, L., Chaidez, C., Gonzalez-Robles, A., Lightbourn-Rojas, L., & Leon-Felix, J. (2017). Isolation and characterization of phiLLS, a novel phage with potential biocontrol agent against multidrug-resistant. Escherichia coli. Frontiers in Microbiology, 8, 1355. https://doi.org/10.3389/fmicb.2017.01355

Andreani, N. A., Carraro, L., Fasolato, L., Balzan, S., Lucchini, R., Novelli, E., & Cardazzo, B. (2016). Characterisation of the thermostable protease AprX in strains of Pseudomonas fluorescens and impact on the shelf-life of dairy products: Preliminary results. Italian journal of food safety, 5(4), 239-244. https://doi.org/10.4081/ijfs.2016.6175

Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., ... & Pevzner, P. A. (2012). SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology, 19(5), 455-477. https://doi.org/10.1089/cmb.2012.0021

Baur, C., Krewinkel, M., Kranz, B., von Neubeck, M., Wenning, M., Scherer, S., ... & Fischer, L. (2015). Quantification of the proteolytic and lipolytic activity of microorganisms isolated from raw milk. International Dairy Journal, 49, 23-29. https://doi.org/10.1016/j.idairyj.2015.04.005

Caballero, A. R., Moreau, J. M., Engel, L. E., Marquart, M. E., Hill, J. M., & O'Callaghan, R. J. (2001). Pseudomonas aeruginosa protease IV enzyme assays and comparison to other Pseudomonas proteases. Analytical Biochemistry, 290(2), 330-337. https://doi.org/10.1006/abio.2001.4999

Carrascosa, C., Millán, R., Jaber, J. R., Lupiola, P., del Rosario-Quintana, C., Mauricio, C., & Sanjuán, E. (2015). Blue pigment in fresh cheese produced by Pseudomonas fluorescens. Food Control, 54, 95-102. https://doi.org/10.1016/j.foodcont.2014.12.039

Chopin, M. C., Chopin, A., & Roux, C. (1976). Definition of bacteriophage groups according to their lytic action on mesophilic lactic streptococci. Applied and Environmental Microbiology, 32(6), 741-746. https://doi.org/10.1128/ aem.32.6.741-746.1976

Chumsen, J., Phumkhachorn, P., Chaiwong, T., Lulitanond, V., & Panya, M. (2020). Isolation and characterization of lytic bacteriophages against multidrug resistant Escherichia coli. Journal of Current Science and Technology, 10(1), 41-48.

Diallo, K., & Dublanchet, A. (2022). Benefits of combined phage–antibiotic therapy for the control of antibiotic-resistant bacteria: a literature review. Antibiotics, 11(7), 839. https://doi.org/10.3390/antibiotics11070839

do Nascimento, E. C., Sabino, M. C., da Roza Corguinha, L., Targino, B. N., Lange, C. C., de Oliveira Pinto, C. L., ... & Hungaro, H. M. (2022). Lytic bacteriophages UFJF_PfDIW6 and UFJF_PfSW6 prevent Pseudomonas fluorescens growth in vitro and the proteolytic-caused spoilage of raw milk during chilled storage. Food Microbiology, 101, 103892. https://doi.org/10.1016/j.fm.2021.103892

Eller, M. R., Vidigal, P. M., Salgado, R. L., Alves, M. P., Dias, R. S., da Silva, C. C., ... & De Paula, S. O. (2014). UFV-P2 as a member of the Luz24likevirus genus: a new overview on comparative functional genome analyses of the LUZ24-like phages. BMC Genomics, 15, 1-10. https://doi.org/10.1186/1471-2164-15-7

Fricker, M., Skånseng, B., Rudi, K., Stessl, B., & Ehling-Schulz, M. (2011). Shift from farm to dairy tank milk microbiota revealed by a polyphasic approach is independent from geographical origin. International Journal of Food Microbiology, 145, 24-30. https://doi.org/10.1016/j.ijfoodmicro.2010.08.025

Glück, C., Rentschler, E., Krewinkel, M., Merz, M., von Neubeck, M., Wenning, M., ... & Fischer, L. (2016). Thermostability of peptidases secreted by microorganisms associated with raw milk. International Dairy Journal, 56, 186-197. https://doi.org/10.1016/j.idairyj.2016.01.025

Grant, J. R., & Stothard, P. (2008). The CGView Server: a comparative genomics tool for circular genomes. Nucleic Acids Research, 36(2), W181-W184. https://doi.org/10.1093/nar/gkn179

Guerreiro, P. K., Machado, M. R. F., Braga, G. C., Gasparino, E., & Franzener, A. S. M. (2005). Microbiological quality of milk through preventive techniques in the handling of production. Ciencia E Agrotecnologia, 29, 216–222. https://doi.org/10.1590/S1413-70542005000100027

Guttman, B., Raya, R., & Kutter, E. (2005). Bacteriophages: biology and applications. Boca Raton, FL.: CRC Press.

Hungaro, H. M., Vidigal, P. M. P., do Nascimento, E. D., da Costa Oliveira, F. G., Gontijo, M. T. P., & Lopez, M. E. S. (2022). Genomic characterisation of UFJF_PfDIW6: a novel lytic Pseudomonas fluorescens-phage with potential for biocontrol in the dairy industry. Viruses, 14(3), Article 629. https://doi.org/10.3390/v14030629

Hu, Z., Meng, X. C., & Liu, F. (2016). Isolation and characterisation of lytic bacteriophages against Pseudomonas spp., a novel biological intervention for preventing spoilage of raw milk. International Dairy Journal, 55, 72-78. https://doi.org/10.1016/j.idairyj.2015.11.011

Jamal, M., Hussain, T., Das, C. R., & Andleeb, S. (2015). Characterization of Siphoviridae phage Z and studying its efficacy against multidrug-resistant Klebsiella pneumoniae planktonic cells and biofilm. Journal of Medical Microbiology, 64(4), 454-462. https://doi.org/10.1099/jmm.0.000040

Jepson, C. D., & March, J. B. (2004). Bacteriophage lambda is a highly stable DNA vaccine delivery vehicle. Vaccine, 22, 2413–2419. https://doi.org/10.1016/j.vaccine.2003.11.065

Loc-Carrillo, C., & Abedon, S. (2011). Pros and cons of phage-based biocontrol. Bacteriophage, 1(2), 111-114. https://doi.org/10.4161/bact.1.2.14590

Machado, S. G., Baglinière, F., Marchand, S., Van Coillie, E., Vanetti, M. C. D., De Block, J., & Heyndrickx, M. (2017). The biodiversity of the microbiota producing heat-resistant enzymes responsible for spoilage in processed bovine milk and dairy products. Frontiers in Microbiology, 8, 1-22. https://doi.org/10.3389/fmicb.2017.00302

Marchand, S., De Block, J., De Jonghe, V., Coorevits, A., Heyndrickx, M., & Herman, L. (2012). Biofilm formation in milk production and processing environments; influence on milk quality and safety. Comprehensive Reviews in Food Science and Food Safety, 11(2), 133-147. https://doi.org/10.1111/j.1541-4337.2011.00183.x

Marchand, S., Vandriesche, G., Coorevits, A., Coudijzer, K., De Jonghe, V., Dewettinck, K., ... & De Block, J. (2009). Heterogeneity of heat-resistant proteases from milk Pseudomonas species. International Journal of Food Microbiology, 133(1-2), 68-77. https://doi.org/10.1016/j.ijfoodmicro.2009.04.027

Martin, N. H., Murphy, S. C., Ralyea, R. D., Wiedmann, M., & Boor, K. J. (2011). When cheese gets the blues: Pseudomonas fluorescens as the causative agent of cheese spoilage. Journal of Dairy Science, 94(6), 3176-3183. https://doi.org/10.3168/jds.2011-4312

Martins, M. L., Pinto, U. M., Riedel, K., & Vanetti, M. C. D. (2015). Milk-deteriorating exoenzymes from Pseudomonas fluorescens 041 isolated from refrigerated raw milk. Brazilian Journal of Microbiology, 46, 207-217.

Meng, L., Zhang, Y., Liu, H., Zhao, S. H., Wang, J., & Zheng, N. (2017). Characterization of Pseudomonas spp. and associated proteolytic properties in raw milk stored at low temperatures. Frontiers in Microbiology, 8, Article 2158. https://doi.org/10.3389/fmicb.2017.02158

Oechslin, F. (2018). Resistance development to bacteriophages occurring during bacteriophage-based biocontrol. Viruses, 10(7), 351. https://doi.org/10.3390/v10070351

Pirisi, A. (2000). Phage therapy—advantages over antibiotics?. Lancet, 356, Article number 1418. https://doi.org/10.1016/S0140-6736(05)74059-9

Pringsulaka, O., Patarasinpaiboon, N., Suwannasai, N., Atthakor, W., & Rangsiruji, A. (2011). Isolation and characterisation of a novel Podoviridae-phage infecting Weissella cibaria N 22 from Nham, a Thai fermented pork sausage. Food Microbiology, 28(3), 518-525. https://doi.org/10.1016/j.fm.2010.10.011

Reichler, S. J., Trmcic, A., Martin, N. H., Boor, K. J., & Wiedmann, M. (2018). Pseudomonas fluorescens group bacterial strains are responsible for repeat and sporadic postpasteurization contamination and reduced fluid milk shelf life. Journal of Dairy Science, 101(9), 7780-7800. https://doi.org/10.3168/jds.2018-14438

Sambrook, J., Fritsch, E. R., & Maniatis, T. (1989). Molecular cloning: a laboratory manual. 2nd ed. New York, US: Cold Spring Harbor.

Sillankorva, S., Neubauer, P., & Azeredo, J. (2008). Isolation and characterization of a T7-like lytic phage for Pseudomonas fluorescens. BMC biotechnology, 8(1), 1-11. https://doi:10.1186/1472-6750-8-80

Silva, Y. J., Costa, L., Pereira, C., Cunha, Â., Calado, R., Gomes, N., & Almeida, A. (2014). Influence of environmental variables in the efficiency of phage-based biocontrol in aquaculture. Microbial Biotechnology, 7(5), 401–413. https://doi.org/10.1111/1751-7915.12090

Sulakvelidze, A., Alavidze, Z., & Morris, J. G., Jr. (2001). Bacteriophage therapy. Antimicrobial Agents and Chemotherapy, 45(3), 649 – 659. https://doi.org/10.1128/aac.45.3.649-659.2001

Sunthornthummas, S., Doi, K., Rangsiruji, A., Sarawaneeyaruk, S., & Pringsulaka, O. (2017). Isolation and characterization of Lactobacillus paracasei LPC and phage ΦT25 from fermented milk. Food Control, 73(8), 1353-1361. https://doi.org/10.1016/j.foodcont.2016.10.052

Svensson, V., & Christiansson, A. (1991). Methods for phage monitoring. FIL-IDF Bulletin, 263, 29-39.

Tanaka, C., Yamada. K., Takeuchi, H., Inokuchi, Y., Kashiwagi, A., & Toba, T. (2018). A lytic bacteriophage for controlling Pseudomonas lactis in raw cow’s milk. Applied and Environmental Microbiology, 84(18), 1-11. https://doi.org/10.1128/AEM.00111-18

Thiel, K. (2004). Old dogma, new tricks—21st century phage therapy. Nature biotechnology, 22(1), 31-36. https://doi.org/10.1038/nbt0104-31

von Neubeck, M., Baur, C., Krewinkel, M., Stoeckel, M., Kranz, B., Stressler, T., ... & Wenning, M. (2015). Biodiversity of refrigerated raw milk microbiota and their enzymatic spoilage potential. International Journal of Food Microbiology, 211, 57-65. https://doi.org/10.1016/j.ijfoodmicro.2015.07.001

Wang, L., & Jayarao, B. M. (2001). Phenotypic and genotypic characterization of Pseudomonas fluorescens isolated from bulk tank milk. Journal of Dairy Science, 84(6), 1421-1429. https://doi.org/10.3168/jds.S0022-0302(01)70174-9

Zhang, D., Palmer, J., Teh, K. H., Calinisan, M. M. A., & Flint, S. (2020). Milk fat influences proteolytic enzyme activity of dairy Pseudomonas species. International Journal of Food Microbiology, 320, Article 108543. https://doi.org/10.1016/j.ijfoodmicro.2020.108543

Downloads

Published

2023-07-15

How to Cite

Wongyoo, R. ., Sunthornthummas, S. ., Surachat, K. ., Atithep, T. ., Rangsiruji, A. ., Sarawaneeyaruk, S. ., & Pringsulaka, O. (2023). Isolation and Characterization of Lytic Pseudomonas fluorescens Bacteriophage isolated from milk. Journal of Current Science and Technology, 13(2), 428–442. https://doi.org/10.59796/jcst.V13N2.2023.885

Issue

Section

Research Article

Categories