Environmental Surveillance of Gram-Negative Bacteria and bla Genes in Hospital Facilities and Surrounding Waters in Thailand

GNB and bla genes from environments

Authors

  • Sangrasami Meeprawat Microbiology Group, Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Rangsit Center, Pathum Thani, 12121 Thailand & Research Unit, Thailand Bioresource Research Center, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, 12121 Thailand
  • Phuphiphat Jaikaew Bioinformatics Group, Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Rangsit Center, Pathum Thani, 12121 Thailand
  • Ruthada Chanklan Microbiology Group, Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Rangsit Center, Pathum Thani, 12121 Thailand
  • Srisuda Pannanusorn Microbiology Group, Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Rangsit Center, Pathum Thani, 12121 Thailand
  • Sugunya Utaida Microbiology Group, Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Rangsit Center, Pathum Thani, 12121 Thailand

DOI:

https://doi.org/10.59796/jcst.V15N3.2025.121

Keywords:

dissemination, Gram-negative bacteria, bla gene, hospital facilities, water environment, ARB, ARGs

Abstract

To reveal the real time prevalent situation of antibiotic-resistant bacteria (ARB) and bla genes in Thailand, we monitored 83 isolates of Gram-negative bacteria (GNB) from hospital facilities and surrounding environmental waters. 16S rRNA gene sequencing was performed. Polymerase chain reactions were employed for bla gene detection. Disk diffusion was used for antimicrobial susceptibility testing. As a result, Enterobacter mori (20%) and Klebsiella pneumoniae (17.14%) were prevalent in hospital facilities, while K. pneumoniae (27.08%) and Enterobacter cloacae (14.58%) prevailed in water samples. Ampicillin resistance rates were highest, at 65.71% and 66.67% in hospital and water isolates, respectively. Enterobacter species from water samples exhibited multidrug-resistant characteristics. blaSHV and blaTEM were highly prevalent, 91.43% and 89.58% in various bacterial species from hospital facilities and water samples, respectively. The coexistence of blaSHV and blaTEM and blaNDM was the most common overall (16.87%). The prevalence of the same bacterial species and bla genes in both sectors suggests the cross-transfer of ARGs and resistant bacteria between different environments, hospital and water. The findings emphasize concerns about the safety of water sources and bacterial contamination in hospital facilities.

References

Abe, K., Nomura, N., & Suzuki, S. (2020). Biofilms: Hot spots of horizontal gene transfer (HGT) in aquatic environments, with a focus on a new HGT mechanism. FEMS Microbiology Ecology, 96(5), Article fiaa031. https://doi.org/10.1093/femsec/fiaa031

Adamu, K. M., Zhigun, I. I., Iloba, I. K., Babadoko, A. M., Ikomi, R. B., Shuaibu, R., ... & Ibrahim, A. A. (2018). Prevalence of bacteria isolates in water and some biota of Lapai-Agaie dam, Nigeria. Science World Journal, 13(4), 75–80.

Ahmad, I., Malak, H. A., & Abulreesh, H. H. (2021). Environmental antimicrobial resistance and its drivers: A potential threat to public health. Journal of Global Antimicrobial Resistance, 27, 101-111. https://doi.org/10.1016/j.jgar.2021.08.001

Akpaka, P. E., Vaillant, A., Wilson, C., & Jayaratne, P. (2021). Extended spectrum beta- lactamase (ESBL) produced by gram-negative bacteria in Trinidad and Tobago. International Journal of Microbiology, 2021, Article 5582755. https://doi.org/10.1155/2021/5582755

Andrade, L., Kelly, K., Hynds, P., Weatherill, J., Majury, A. & O'Dwyer, J. (2020). Groundwater resources as a global reservoir for antimicrobial-resistant bacteria. Water Research, 170, Article 115360. https://doi.org/10.1016/j.watres.2019.115360

Anugulruengkitt, S., Charoenpong, L., Kulthanmanusorn, A., Thienthong, V., Usayaporn, S., Kaewkhankhaeng, W., ... & Tangcharoensathien, V. (2023). Point prevalence survey of antibiotic use among hospitalized patients across 41 hospitals in Thailand. JAC Antimicrobial Resistance, 5(1), Article dlac140. https://doi.org/10.1093/jacamr/dlac140

Arias-Andres, M., Klümper, U., Rojas-Jimenez, K., & Grossart, H. P. (2018). Microplastic pollution increases gene exchange in aquatic ecosystems. Environmental Pollution, 237, 253-261. https://doi.org/10.1016/j.envpol.2018.02.058

Aslam, B., Khurshid, M., Arshad, M. I., Muzammil, S., Rasool, M., Yasmeen, N., ... & Baloch, Z. (2021). Antibiotic resistance: One Health One World outlook. Frontiers in Cellular and Infection Microbiology, 11, Article 771510. https://doi.org/10.3389/fcimb.2021.771510

Assawatheptawee, K., Tansawai, U., Kiddee, A., Thongngen, P., Punyadi, P., Romgaew, T., ... & Niumsup, P. R. (2017). Occurrence of extended- spectrum and Ampc-type β-lactamase genes in Escherichia coli Isolated from water environments in northern, Thailand. Microbes and Environments, 32(3), 293–296. https://doi.org/10.1264/jsme2.ME17050

Assawatheptawee, K., Treebupachatsakul, P., Luangtongkum, T., & Niumsup, P.R. (2022). Risk factors for community-acquired urinary tract infections caused by multidrug-resistant Enterobacterales in Thailand. Antibiotics, 11(8), Article 1039. https://doi.org/10.3390/antibiotics11081039

Bergey, D. H., & Holt, J. G. (1993). Bergey’s manual of determinative bacteriology (9th ed.). Maryland, US: Williams and Wilkins.

Berglund, B. (2015). Environmental dissemination of antibiotic resistance genes and correlation to anthropogenic contamination with antibiotics. Infection Ecology & Epidemiology, 5, Article 28564. https://doi.org/10.3402/iee.v5.28564

Bhumbla, U., Majumdar, S., Jain, S., & Dalal, A, S. (2020). A study of isolation and identification of bacteria from lake water in and around Udaipur, Rajasthan. Journal of Family Medicine and Primary Care, 9(2), 751-754. https://doi.org/10.4103/jfmpc.jfmpc_1032_19

Bonadonna, L., Briancesco, R., & Coccia, A.M. (2017). Analysis of microorganisms in hospital environments and potential risks. In: S. Capolongo, G. Settimo, M. Gola (Eds.), Indoor air quality in healthcare facilities (pp. 53-62). SpringerBriefs in Public Health. Springer, Cham. https://doi.org/10.1007/978-3-319-49160-8_5

Cappuccino, J. G., & Welsh, C. T. (2018). Microbiology: A laboratory manual (11th ed.). San Francisco, CA: Pearson/Benjamin Cummings.

Centers for Disease Control and Prevention (CDC). (2022). COVID-19: U.S. Impact on antimicrobial resistance, special report 2022. Retrieved from https://www.cdc.gov/antimicrobial-resistance/media/pdfs/covid19-impact-report-508.pdf

Chansareewittaya, K., & Krajangcharoensakul, S. (2022). The occurrence of antibiotic resistant bacteria contamination in sub-district health-promoting hospitals in Chiang Rai, Thailand. Journal of Health Science and Medical Research, 40(4), 459-473. https://doi.org/10.31584/jhsmr.2021857

Cheng, C. M., Lin, W., Van, K. T., Phan, L., Tran, N. N., & Farmer, D. (2008). Rapid detection of Salmonella in foods using real-time PCR. Journal of Food Protection, 71(12), 2436–2441. https://doi.org/10.4315/0362-028x-71.12.2436

Clinical and Laboratory Standards Institute (CLSI). (2012). Performance standards for antimicrobial disk susceptibility tests; approved standard (11th ed.). CLSI Document M02-A11. Wayne, PA: Clinical and Laboratory Standards Institute.

Clinical and Laboratory Standards Institute (CLSI). (2020) Performance standards for antimicrobial testing. 30th ed. CLSI supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute.

Cruz-Córdova, A., Esteban-Kenel, V., Espinosa-Mazariego, K., Ochoa, S. A., Espinosa, S. M., Elhain, A. d. l. G., … & Xicohtencatl-Cortes, J. (2014). Pathogenic determinants of clinical Klebsiella pneumoniae strains associated with their persistence in the hospital environment. Boletín Médico del Hospital Infantil de México, 71(1), 15–24.

Davin-Regli, A., & Pagès, J. M. (2015). Enterobacter aerogenes and enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment. Frontiers in Microbiology, 6, Article 392. https://doi.org/10.3389/fmicb.2015.00392

Dawangpa, A., Lertwatcharasarakul, P., Ramasoota, P., Boonsoongnern, A., Ratanavanichrojn, N., Sanguankiat, A., ... & Tulayakul, P. (2021). Genotypic and phenotypic situation of antimicrobial drug resistance of Escherichia coli in water and manure between biogas and non-biogas swine farms in central Thailand. Journal of Environmental Management, 279, Article 111659. https://doi.org/10.1016/j.jenvman.2020.111659

Deekshit, V. K., & Srikumar, S. (2022). To be, or not to be the dilemma of silent antimicrobial resistance genes in bacteria. Journal of Applied Microbiology, 133(5), 2902–2914. https://doi.org/10.1111/jam.15738

Department of Disease Control. (2022). Antimicrobial resistance surveillance and investigation guidelines (pp. 26–29). Division of Epidemiology, Department of Disease Control, Ministry of Public Health Thailand. Retrieved from https://www.ddc.moph.go.th/uploads/publish/1541820240307052552.pdf

Devarajan, N., Laffite, A., Mulaji, C. K., Otamonga, J. P., Mpiana, P. T., Mubedi, J. I., ... & Poté, J. (2016). Occurrence of antibiotic resistance genes and bacterial markers in a tropical river receiving hospital and urban wastewaters. PLOS One, 11(2), Article e0149211. https://doi.org/10.1371/journal.pone.0149211

Dorward, D. W., Garon, C. F., & Judd, R. C. (1989). Export and intercellular transfer of DNA via membrane blebs of Neisseria gonorrhoeae. Journal of Bacteriology, 171(5), 2499–2505. https://doi.org/10.1128/jb.171.5.2499-2505.1989

Falgenhauer, L., Schwengers, O., Schmiedel, J., Baars, C., Lambrecht, O., Heß, S., ... & Imirzalioglu, C. (2019). Multidrug-resistant and clinically relevant Gram-negative bacteria are present in German surface waters. Frontiers in Microbiology, 10, Article 2779. https://doi.org/10.3389/fmicb.2019.02779

Fernandes, M. R., Moura, Q., Sartori, L., Silva, K. C., Cunha, M. P., Esposito, F., & Lincopan, N. (2016). Silent dissemination of colistin-resistant Escherichia coli in South America could contribute to the global spread of the mcr-1 gene. Eurosurveillance, 21(17). https://doi.org/10.2807/1560-7917.ES.2016.21.17.30214

Ganbold, M., Seo, J., Wi, Y.M., Kwon, K.T., & Ko, K.S. (2023). Species identification, antibiotic resistance, and virulence in Enterobacter cloacae complex clinical isolates from South Korea. Frontiers in Microbiology, 14, Article 1122691. https://doi.org/10.3389/fmicb.2023.1122691

Hammond, M. E., & Pokorný, R. (2020). Diversity of tree species in gap regeneration under tropical moist semi-deciduous forest: an example from Bia Tano Forest Reserve. Diversity, 12(8), Article 301. https://doi.org/10.3390/d12080301

Hassan, M. I., Alkharsah, K. R., Alzahrani, A. J., Obeid, O. E., Khamis, A. H., & Diab, A. (2013). Detection of extended spectrum beta-lactamases-producing isolates and effect of AmpC overlapping. The Journal of Infection in Developing Countries, 7(08), 618-629. https://doi.org/10.3855/jidc.2919

Hongsuwan, M., Srisamang, P., Kanoksil, M., Luangasanatip, N., Jatapai, A., Day, N. P., ... & Limmathurotsakul, D. (2014). Increasing incidence of hospital-acquired and healthcare-associated bacteremia in northeast Thailand: A multicenter surveillance study. PLOS One, 9, Article e109324. https://doi.org/10.1371/journal.pone.0109324

Hussain, H. I., Aqib, A. I., Seleem, M. N., Shabbir, M. A., Hao, H., Iqbal, Z., ... & Li, K. (2021). Genetic basis of molecular mechanisms in β-lactam resistant gram-negative bacteria. Microbial Pathogenesis, 158, Article 105040. https://doi.org/10.1016/j.micpath.2021.105040

Issa, M. A. A. (2019). Diversity and abundance of wild birds species’ in two different habitats at Sharkia Governorate, Egypt. The Journal of Basic and Applied Zoology, 80, 1-7. https://doi.org/10.1186/s41936-019-0103-5

Jadhav, V., Paul, A., Kulkarni, S., & Jadhav, S. (2023). Emerging issues, genome diversity and risk factors in infections due to MDR Klebsiella pneumoniae from tertiary care hospital. Teikyo Medical Journal, 46(6), 7965-7977.

Joachim, A., Manyahi, J., Issa, H., Lwoga, J., Msafiri, F., & Majigo, M. (2023). Predominance of multidrug-resistant gram-negative bacteria on contaminated surfaces at a tertiary hospital in Tanzania: A call to strengthening environmental infection prevention and control measures. Current Microbiology, 80(5), Article 148. https://doi.org/10.1007/s00284-023-03254-8

Joshi, P. R., Acharya, M., Kakshapati, T., Leungtongkam, U., Thummeepak, R., & Sitthisak, S. (2017). Co-existence of blaOXA-23 and blaNDM-1 genes of Acinetobacter baumannii isolated from Nepal: antimicrobial resistance and clinical significance. Antimicrobial Resistance and Infection Control, 6, Article 21. https://doi.org/10.1186/s13756-017-0180-5

Kasemsan, T., Sutthimusik, S., & Lertworapreecha, M. (2015). Screening for Salmonella enterica producing enzyme extended spectrum beta-lactamase (ESBL) from swine fecal samples in Phatthalung Province. Proceedings of the 53rd Kasetsart University Annual Conference, Smart Agriculture "the Future of Thailand". Bangkok, Thailand. (in Thai and English) Retrieved from https://cabidigitallibrary.org by 203.131.208.72

Khoka, A. (2020). Antibiotics and antibiotic resistance. Journal of Medicine and Health Sciences, 27(2), 125–139.

Kiddee, A., Assawatheptawee, K., Na-Udom, A., Treebupachatsakul, P., Wangteeraprasert, A., Walsh, T. R., & Niumsup, P. R. (2018). Risk factors for gastrointestinal colonization and acquisition of carbapenem-resistant gram-negative bacteria among patients in intensive care units in Thailand. Antimicrobial Agents and Chemotherapy, 62(8), Article e00341-18. https://doi.org/10.1128/AAC.00341-18

Kotzamanidis, C., Malousi, A., Paraskeva, A., Vafeas, G., Giantzi, V., Hatzigiannakis, E., ... & Zdragas, A. (2024). River waters in Greece: A reservoir for clinically relevant extended-spectrum-β-lactamases-producing Escherichia coli. Science of The Total Environment, 941, Article 173554. https://doi.org/10.1016/j.scitotenv.2024.173554

Lemmen, S. W., Häfner, H., Zolldann, D., Stanzel, S., & Lütticken, R. (2004). Distribution of multi-resistant Gram-negative versus Gram-positive bacteria in the hospital inanimate environment. The Journal of Hospital Infection, 56(3), 191–197. https://doi.org/10.1016/j.jhin.2003.12.004

Lim, C., Takahashi, E., Hongsuwan, M., Wuthiekanun, V., Thamlikitkul, V., Hinjoy, S., ... & Limmathurotsakul, D. (2016). Epidemiology and burden of multidrug-resistant bacterial infection in a developing country. Epidemiology and Global Health, 5, Article e18082. https://doi.org/10.7554/eLife.18082

Martak, D., Henriot, C. P., & Hocquet, D. (2024). Environment, animals, and food as reservoirs of antibiotic-resistant bacteria for humans: One health or more?. Infectious Diseases Now, 54(4), Article 104895. https://doi.org/10.1016/j.idnow.2024.104895

Messai, Y., Benhassine, T., Naim, M., Paul, G., & Bakour, R. (2006). Prevalence of beta- lactams resistance among Escherichia coli clinical isolates from a hospital in Algiers. Revista Espanola de Quimioterapia, 19(2), 144–151.

Miao, X., Zhu, L., & Bai, X. (2022). Bacterial community assembly and beta-lactamase (bla) genes regulation in a full-scale chloraminated drinking water supply system. Journal of Environmental Chemical Engineering, 10(3), Article 107677. https://doi.org/10.1016/j.jece.2022.107677

Michaelis, C., & Grohmann, E. (2023). Horizontal gene transfer of antibiotic resistance genes in biofilms. Antibiotics, 12(2), Article 328. https://doi.org/10.3390/antibiotics12020328

Odoyo, E., Matano, D., Tiria, F., Georges, M., Kyanya, C., Wahome, S., ... & Musila, L. (2023). Environmental contamination across multiple hospital departments with multidrug-resistant bacteria pose an elevated risk of healthcare-associated infections in Kenyan hospitals. Antimicrobial Resistance & Infection Control, 12(1), Article 22. https://doi.org/10.1186/s13756-023-01227-x

Onmek, N., Kongcharoen, J., Singtong, A., Penjumrus, A., & Junnoo, S. (2020). Environmental factors and ventilation affect concentrations of microorganisms in hospital wards of Southern Thailand. Journal of Environmental and Public Health, 2020(1), Article 7292198. https://doi.org/10.1155/2020/7292198

Poirel, L., Walsh, T. R., Cuvillier, V., & Nordmann, P. (2011). Multiplex PCR for detection of acquired carbapenemase genes. Diagnostic Microbiology and Infectious Disease, 70(1), 119-123. https://doi.org/10.1016/j.diagmicrobio.2010.12.002

Pornmee, T., Siripanichgon, K., Tribuddarat, C., & Diraphat, P. (2015). Beta-lactamase gene in hospital effluent. Proceedings of RSU National Research Conference 2015. Thailand. https://doi.org/10.14458/RSU.res.2015.179

Preechachuawong, P., Santimaleeworagun, W., Jitwasinkul, T., & Samret, W. (2015). Detection of New Delhi metallo-beta-lactamase-1-producing Klebsiella pneumoniae at a general hospital in Thailand. Southeast Asian Journal of Tropical Medicine and Public Health, 46(6), 1031–1036.

Ruangsombat, K., Lim, A., Pradit, S., Cholumpai, V., & Noppradit, P. (2024). Risk factors affecting the bacterial contamination in water of Thailand’s upper south 2020 - 2022. Trends in Sciences, 21(1), Article 7158. https://doi.org/10.48048/tis.2024.7158

Ruekit, S., Srijan, A., Serichantalergs, O., Margulieux, K. R., Mc Gann, P., Mills, E. G., ... & Swierczewski, B. E. (2022). Molecular characterization of multidrug-resistant ESKAPEE pathogens from clinical samples in Chonburi, Thailand (2017–2018). BMC Infectious Diseases, 22(1), Article 695. https://doi.org/10.1186/s12879-022-07678-8

Sambrook, J., & Russell, D. W. (2001). Molecular cloning: A laboratory manual. 3rd Edition, Vol. 1, Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press.

Siltrakool, B., Berrou, I., Griffiths, D., & Alghamdi, S. (2021). Antibiotics’ use in Thailand: Community pharmacists’ knowledge, attitudes and practices. Antibiotics, 10(2), Article 137. https://doi.org/10.3390/antibiotics10020137

Sneath, P. H. A., & Sokal, R. R. (1973.) Numerical Taxonomy: The Principles and Practice of Numerical Classification. San Francisco, CA: W H Freeman.

Solaiman, S., Handy, E., Brinks, T., Goon, K., Bollinger, C., Sapkota, A. R., ... & Micallef, S. A. (2022). Extended spectrum β-lactamase activity and cephalosporin resistance in Escherichia coli from US Mid-Atlantic surface and reclaimed water. Applied and Environmental Microbiology, 88(15), Article e00837-22. https://doi.org/10.1128/aem.00837-22

Strong, W. L. (2016). Biased richness and evenness relationships within Shannon Wiener index values. Ecological Indicators, 67, 703-713. https://doi.org/10.1016/j.ecolind.2016.03.043

Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123(3), 585-595. https://doi.org/10.1093/genetics/123.3.585

Tamura, K., Nei, M., & Kumar, S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. The Proceedings of National Academy of Sciences USA, 101(30), 11030-11035. https://doi.org/10.1073/pnas.0404206101

Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA 11: molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38(7), 3022-3027. https://doi.org/10.1093/molbev/msab120

Thammasat Project Smart City (Thammasat Smart City). (2017). Thammasat University, Rangsit Campus: Smart campus, smart society. Retrieved from https://planning.tu.ac.th/uploads/planning/pdf/Place/07092561/SmartCity_A2.pdf

Tran, F., & Boedicker, J. Q. (2017). Genetic cargo and bacterial species set the rate of vesicle-mediated horizontal gene transfer. Scientific Reports, 7(1), Article 8813. https://doi.org/10.1038/s41598-017-07447-7

Utaida, S., Dunman, P. M., Macapagal, D., Murphy, E., Projan, S. J., Singh, V. K., ... & Wilkinson, B. J. (2003). Genome-wide transcriptional profiling of the response of Staphylococcus aureus to cell-wall-active antibiotics reveals a cell-wall-stress stimulon. Microbiology, 149(10), 2719-2732. https://doi.org/10.1099/mic.0.26426-0

Wang, H. P., Zhang, H. J., Liu, J., Dong, Q., Duan, S., Ge, J. Q., ... & Zhang, Z. (2017). Antimicrobial resistance of 3 types of gram-negative bacteria isolated from hospital surfaces and the hands of health care workers. American Journal of Infection Control, 45(11), e143-e147. https://doi.org/10.1016/j.ajic.2017.06.002

Woodford, N., Ellington, M. J., Coelho, J. M., Turton, J. F., Ward, M. E., Brown, S., ... & Livermore, D. M. (2006). Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. International Journal of Antimicrobial Agents, 27(4), 351-353. https://doi.org/10.1016/j.ijantimicag.2006.01.004

World Health Organization (WHO). (2024). WHO bacterial priority pathogen list, 2024: Bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance. Retrieved from https://www.who.int/publications/i/item/9789240093461

Wu, M., Ye, X., Chen, K., Li, W., Yuan, J., & Jiang, X. (2017). Bacterial community shift and hydrocarbon transformation during bioremediation of short-term petroleum-contaminated soil. Environmental Pollution, 223, 657-664. https://doi.org/10.1016/j.envpol.2017.01.079

Yuan, T., & Pian, Y. (2023). Hospital wastewater as hotspots for pathogenic microorganisms spread into aquatic environment: A review. Frontiers in Environmental Science, 10, Article 1091734. https://doi.org/10.3389/fenvs.2022.1091734

Zahornacký, O., Porubčin, Š., Rovňáková, A., & Jarčuška, P. (2022). Gram-negative rods on inanimate surfaces of selected hospital facilities and their nosocomial significance. International Journal of Environmental Research and Public Health, 19(10), Article 6039. https://doi.org/10.3390/ijerph19106039

Zhang, S., Huang, J., Zhao, Z., Cao, Y., & Li, B. (2020). Hospital wastewater as a reservoir for antibiotic resistance genes: a meta-analysis. Frontiers in Public Health, 8, Article 574968. https://doi.org/10.3389/fpubh.2020.574968

Zorgani, A., Abofayed, A., Glia, A., Albarbar, A., & Hanish, S. (2015). Prevalence of device-associated nosocomial infections caused by gram-negative bacteria in a trauma intensive care unit in Libya. Oman Medical Journal, 30(4), Article 270. https://doi.org/10.5001/omj.2015.54

Downloads

Published

2025-06-15

How to Cite

Meeprawat, S. ., Jaikaew, P. ., Chanklan, R. ., Pannanusorn, S. ., & Utaida, S. (2025). Environmental Surveillance of Gram-Negative Bacteria and bla Genes in Hospital Facilities and Surrounding Waters in Thailand: GNB and bla genes from environments . Journal of Current Science and Technology, 15(3), 121. https://doi.org/10.59796/jcst.V15N3.2025.121

Issue

Section

Research Article

Categories