Isolation, Identification, and Application of Pigment-Producing Actinobacteria from Stingless Bee Hives for Handicraft Production

Authors

  • Sittichai Urtgam Biology Program, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok 65000, Center of Excellence for Biodiversity, Naresuan University, Phitsanulok 65000, Thailand
  • Tawatchai Sumpradit Department of Microbiology and Parasitology, Faculty of Medical Sciences, Naresuan University, Phitsanulok 65000, Thailand
  • Naruemol Thurnkul Microbiology Program, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok 65000, Thailand

DOI:

https://doi.org/10.59796/jcst.V13N3.2023.749

Keywords:

pigment-producing actinobacteria, clayed flower, stingless bee, handicraft

Abstract

Actinobacteria are distributed in natural habitats and produce a vast variety of natural pigments that are different in colour shades and applied in textile industry and others. The extracted actinobacterial pigments are used as eco-friendly natural dyes and colour and non-toxic to living organisms and environments compared with chemical or synthetic colours. In order to produce actinobacterial pigments for handicraft making, eight strains of the pigmented producing actinobacteria were isolated from stingless bee (Tetragonilla collina Smith, 1857) hives. Based on deep colour shades presented, 4 actinobacterial strains were chosen to prepare various colour for handicrafts, including yellow, violet, green, and pink. To identify actinobacterial strains selected, phylogenetic identification was carried out. The phylogenetic results indicated that strain C2 phylogenetically shared the 16S rDNA sequence 99.6 % similarity with its closest species, namely Streptomyces cellulosae. Strain C4 had the phylogenetic relationship close to Streptomyces californicus (99.9% similarity of 16S rDNA). Strain E1 was a closest member belonged to Streptomyces chartreusis (99.9% 16S rDNA sequence similarity), and strain E2 was phylogenetically closely related to Streptomyces aureoversilis with 99.2% 16S rDNA sequence similarity. To produce the handicraft colour, we cultivated four actinobacterial strains on broken-milled rice, and actinobacterial pigments were extracted using ethyl acetate. The crude extracts obtained were mixed with white flower clay that was used for handicraft making, and the artificial clay flowers were made. This study is the first to report the use of natural colours obtained from pigment-producing actinobacteria in handicrafts in Thailand and other countries.  Future research will explore the application of actinobacterial pigments in various fields, including fine arts, the ceramic industry, and others.

References

Abd-Elnaby, H., Abo-Elala, G., Abdel-Raouf, U., Abd-elwahab, A., & Hamed, M. (2016). Antibacterial and anticancer activity of marine Streptomyces parvus: optimization and application. Biotechnology & Biotechnological Equipment, 30(1), 180-191. https://doi.org/10.1080/13102818.2015.1086280

Abo-Zaid, G. A., Matar, S. M., & Abdelkhalek, A. (2020). Induction of plant resistance against tobacco mosaic virus using the biocontrol agent Streptomyces cellulosae isolate actino 48. Agronomy, 10(11), Article 1620. https://doi.org/10.3390/agronomy10111620

Abo-Zaid, G., Abdelkhalek, A., Matar, S., Darwish, M., & Abdel-Gayed, M. (2021). Application of bio-friendly formulations of chitinase-producing Streptomyces cellulosae actino 48 for controlling peanut soil-borne diseases caused by Sclerotium rolfsii. Journal of Fungi, 7(3), Article 167. https://doi.org/10.3390/jof7030167

Abraham, J., & Chauhan, R. (2018). Profiling of red pigment produced by Streptomyces sp. JAR6 and its bioactivity. 3 Biotech, 8(1), Article 22. https://doi.org/10.1007/s13205-017-1044-7

Ajò, D., Elettivo, G., Fenzi, F., Cesaro, S. N., & Tegani, S. (2019). The Colored Chemistry. Cultura e Scienza del Colore-Color Culture and Science, 11(02), 07-13.

Al-Dhabi, N. A., Esmail, G. A., Duraipandiyan, V., & Arasu, M. V. (2019). Chemical profiling of Streptomyces sp. Al-Dhabi-2 recovered from an extreme environment in Saudi Arabia as a novel drug source for medical and industrial applications. Saudi journal of biological sciences, 26(4), 758-766. https://doi.org/10.1016/j.sjbs.2019.03.009

Amal, A. M., Abeer, K. A., Samia, H. M., Nadia, A. E. N. H., KA, A., & HM, E. H. (2011). Selection of Pigment (Melanin) production in Streptomyces and their application in Printing and Dyeing of Wool Fabrics. Research Journal of Chemical Sciences, 1(5), 22-28.

Anandan, R., Dharumadurai, D., & Manogaran, G. P. (2016). An introduction to actinobacteria. In Actinobacteria-basics and biotechnological applications. IntechOpen.

Arend, K. I., & Bandow, J. E. (2021). Influence of amino acid feeding on production of calcimycin and analogs in Streptomyces chartreusis. International Journal of Environmental Research and Public Health, 18(16), Article 8740. https://doi.org/10.3390/ijerph18168740

Boran, R. (2018). Detergent compatible extracellular lipase from Streptomyces cellulosae Au‐10: A green alternative for the detergent industry. Journal of Surfactants and Detergents, 21(4), 565-573. https://doi.org/10.1002/jsde.12049

Cambronero-Heinrichs, J. C., Matarrita-Carranza, B., Murillo-Cruz, C., Araya-Valverde, E., Chavarría, M., & Pinto-Tomás, A. A. (2019). Phylogenetic analyses of antibiotic-producing Streptomyces sp. isolates obtained from the stingless-bee Tetragonisca angustula (Apidae: Meliponini). Microbiology, 165(3), 292-301. https://doi.org/10.1002/jsde.12049

Chakraborty, I., Redkar, P., Munjal, M., Kumar, S. S., & Rao, K. B. (2015). Isolation and characterization of pigment producing marine actinobacteria from mangrove soil and applications of bio-pigments. Der Pharmacia Lettre, 7, 93-100.

Chen, W., Ye, K., Zhu, X., Zhang, H., Si, R., Chen, J., ... & Han, B. (2021). Actinomycin X2, an antimicrobial depsipeptide from marine-derived Streptomyces cyaneofuscatus applied as a good natural dye for silk fabric. Marine Drugs, 20(1), Article 16. https://doi.org/10.3390/md20010016

El-Naggar, N. E. A., & El-Ewasy, S. M. (2017). Bioproduction, characterization, anticancer and antioxidant activities of extracellular melanin pigment produced by newly isolated microbial cell factories Streptomyces glaucescens NEAE-H. Scientific reports, 7, Article 42129. https://doi.org/10.1038/srep42129

Ferreira, E. S., Hulme, A. N., McNab, H., & Quye, A. (2004). The natural constituents of historical textile dyes. Chemical Society Reviews, 33(6), 329-336. https://doi.org/10.1039/b305697j

Gilbert, K. G., & Cooke, D. T. (2001). Dyes from plants: Past usage, present understanding and potential. Plant growth regulation, 34, 57-69. https://doi.org/10.1023/A:1013374618870

Goodfellow, M., Kämpfer, P., Busse, H. J., Trujillo, M. E., Suzuki, K., Ludwig, W., & Whitman, W. B. (2012). Bergey’s Manual of Systematic Bacteriology. 2nd Edition. Volume Five. The Actinobacteria, Part A and B. New York: Springer-Verlag. ISBN 978-0-387-68233-4.

Hagan, E., & Poulin, J. (2021). Statistics of the early synthetic dye industry. Heritage Science, 9(1), Article 33. https://doi.org/10.1186/s40494-021-00493-5

Hamed, M. M., Abdrabo, M. A., & Youssif, A. M. (2021). Biosurfactant production by marine actinomycetes isolates Streptomyces althioticus RG3 and Streptomyces californicus RG8 as promising sources of antimicrobial and antifouling effects. Microbiology and Biotechnology Letters, 49(3), 356-366. https://doi.org/10.48022/mbl.2106.06007

Hazarika, S. N., & Thakur, D. (2020). Actinobacteria. In Beneficial Microbes in Agro-Ecology (pp. 443-476). Cambridge: Academic Press.

Indrayani, L., & Triwiswara, M. (2020). The implementation of green industry standard batik industry to develop eco-friendly. In IOP Conference Series: Materials Science and Engineering (pp. 012081), 980(1). Bristol: IOP Publishing.

Jadhav, R. S., Karad D. D., & Kulkarni, S. W. (2016). Isolation and characterization of keratinolytic Streptomyces coelicoflavus. International Journal of Current Microbiology and Applied Sciences, 5(7), 153-163. http://dx.doi.org/10.20546/ijcmas.2016.507.015

Karuppiah, V., Aarthi, C., Sivakumar, K., & Kannan, L. (2013). Statistical optimization and anticancer activity of a red pigment isolated from Streptomyces sp. PM4. Asian Pacific Journal of Tropical Biomedicine, 3(8), 650-656. https://doi.org/10.1016/S2221-1691(13)60131-8

Khushboo, Kumar, P., Dubey, K. K., Usmani, Z., Sharma, M., & Gupta, V. K. (2022). Biotechnological and industrial applications of Streptomyces metabolites. Biofuels, Bioproducts and Biorefining, 16, 244-264. https://doi.org/10.1002/bbb.2294

Konstadakopulos, D. (2008). Environmental and resource degradation associated with small‐scale enterprise clusters in the Red River Delta of Northern Vietnam. Geographical Research, 46(1), 51-61. https://doi.org/10.1111/j.1745-5871.2007.00491.x

Kramar, A., Ilic-Tomic, T., Petkovic, M., Radulović, N., Kostic, M., Jocic, D., & Nikodinovic-Runic, J. (2014). Crude bacterial extracts of two new Streptomyces sp. isolates as bio-colorants for textile dyeing. World Journal of Microbiology and Biotechnology, 30, 2231-2240. https://doi.org/10.1007/s11274-014-1644-x

Kramar, A., & Kostic, M. M. (2022). Bacterial secondary metabolites as biopigments for textile dyeing. Textiles, 2(2), 252-264. https://doi.org/10.3390/textiles2020013

Kumar, M., Kumar, P., Das, P., Solanki, R., & Kapur, M. K. (2020). Potential applications of extracellular enzymes from Streptomyces spp. in various industries. Archives of Microbiology, 202, 1597-1615. https://doi.org/10.1007/s00203-020-01898-9

Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547-1549. https://doi.org/10.1093/molbev/msy096.

Lane, D. J. (1991) 16S/23S rRNA Sequencing. In: Stackebrandt, E. and Goodfellow, M., Eds., Nucleic Acid Techniques in Bacterial Systematic, John Wiley and Sons, New York, 115-175.

Malik, K., Tokkas, J., Goyal, S. (2012). Microbial Pigments: A review. Int. J. Microb. Resour. Technol., 1, 361–365.

Manikkam, R., Venugopal, G., Ramasamy, B., & Kumar, V. (2015). Effect of critical medium components and culture conditions on antitubercular pigment production from novel Streptomyces sp D25 isolated from Thar desert, Rajasthan. Journal of Applied Pharmaceutical Science, 5(6), 015-019. https://doi.org/10.7324/JAPS.2015.50603

Menegatti, C., Lourenzon, V. B., Rodriguez-Hernandez, D., da Paixao Melo, W. G., Ferreira, L. L. G., Andricopulo, A. D., ... & Pupo, M. T. (2020). Meliponamycins: antimicrobials from stingless bee-associated Streptomyces sp. Journal of natural products, 83(3), 610-616. https://doi.org/10.1021/acs.jnatprod.9b01011

Morais, P. B., Calaça, P. S. S. T., & Rosa, C. A. (2013). Microorganisms associated with stingless bees. In Vit, P., Pedro, S., Roubik, D. (Eds), Pot-Honey. New York: Springer. ISBN: 978-1-4614-4959-1

Murcia Mesa, J. J., Hernández Niño, J. S., González, W., Rojas, H., Hidalgo, M. C., & Navío, J. A. (2021). Photocatalytic treatment of stained wastewater coming from handicraft factories. A case study at the pilot plant level. Water, 13(19), Article 2705. https://doi.org/10.3390/w13192705

Naligama, K. N., Weerasinghe, K. E., & Halmillawewa, A. P. (2022). Characterization of Bioactive Actinomycetes Isolated from Kadolkele Mangrove Sediments, Sri Lanka. Polish Journal of Microbiology, 71(2), 191-204. https://doi.org/10.33073/pjm-2022-017

Narsing Rao, M. P., & Li, W. J. (2022). Diversity of actinobacteria in various habitats. In Actinobacteria: Microbiology to Synthetic Biology (pp. 37-58). Singapore: Springer Nature Singapore.

Nurcahyanti, D., Wahyuningsih, N., & Amboro, J. L. (2021). Natural clay dye to develop eco-friendly products based on regional potential in Batik Crafts Center of Jarum Village, Bayat Subdistrict, Klaten Regency. In IOP Conference Series: Earth and Environmental Science. 905(1), p. 012076. Bristol: IOP Publishing.

Ortega, H. E., Batista, J. M., Melo, W. G., Paula, G. T. D., & Pupo, M. T. (2019). Structure and absolute configuration of secondary metabolites from two strains of Streptomyces chartreusis associated with attine ants. Journal of the Brazilian Chemical Society, 30(12), 2672-2680. https://doi.org/10.21577/0103-5053.20190194

Promnuan, Y., Kudo, T., Ohkuma, M., & Chantawannakul, P. (2013). Streptomyces chiangmaiensis sp. nov. and Streptomyces lannensis sp. nov., isolated from the South-East Asian stingless bee (Tetragonilla collina). International journal of systematic and evolutionary microbiology, 63(Pt_5), 1896-1901. https://doi.org/10.1099/ijs.0.045930-0

Promnuan, Y., Promsai, S., & Meelai, S. (2020). Antimicrobial activity of Streptomyces spp. isolated from Apis dorsata combs against some phytopathogenic bacteria. PeerJ, 8, Article e10512. https://doi.org/10.7717/peerj.10512

Ramesh, C., Vinithkumar, N. V., Kirubagaran, R., Venil, C. K., & Dufossé, L. (2020). Applications of prodigiosin extracted from marine red pigmented bacteria Zooshikella sp. and actinomycete Streptomyces sp. Microorganisms, 8(4), Article 556. https://doi.org/10.3390/microorganisms8040556

Rani, R., Arora, S., Kaur, J., & Manhas, R. K. (2018). Phenolic compounds as antioxidants and chemopreventive drugs from Streptomyces cellulosae strain TES17 isolated from rhizosphere of Camellia sinensis. BMC complementary and alternative medicine, 18, Article 82. https://doi.org/10.1186/s12906-018-2154-4

Rodríguez-Hernández, D., Melo, W. G., Menegatti, C., Lourenzon, V. B., do Nascimento, F. S., & Pupo, M. T. (2019). Actinobacteria associated with stingless bees biosynthesize bioactive polyketides against bacterial pathogens. New Journal of Chemistry, 43(25), 10109-10117.

Shivlata, L., & Satyanarayana, T. (2017). Actinobacteria in agricultural and environmental sustainability. Agro-Environmental Sustainability: Volume 1: Managing Crop Health (pp. 173-218). Singapore: Springer.

Singh, R., & Dubey, A. K. (2020). Isolation and characterization of a new endophytic actinobacterium Streptomyces californicus strain ADR1 as a promising source of anti-bacterial, anti-biofilm and antioxidant metabolites. Microorganisms, 8(6), Article 929. https://doi.org/10.3390/microorganisms8060929

Sripiroj, P., Tanasupawat, P. S. S., & Suwanborirux, K. (2008). 16S rDNA sequence analyses and antimicrobial activities of Streptomyces strains from Thai soils. Journal of Health Research, 22(1), 1-8.

Stankovic, N., Radulovic, V., Petkovic, M., Vuckovic, I., Jadranin, M., Vasiljevic, B., & Nikodinovic-Runic, J. (2012). Streptomyces sp. JS520 produces exceptionally high quantities of undecylprodigiosin with antibacterial, antioxidative, and UV-protective properties. Applied Microbiology and Biotechnology, 96, 1217-1231. https://doi.org/10.1007/s00253-012-4237-3

Suphaphimol, N., Attasopa, K., Pakwan, C., Chantawannakul, P., & Disayathanoowat, T. (2020). Cultured-dependent and cultured-independent study of bacteria associated with Thai commercial stingless bee Lepidotrigona terminata. Journal of Apicultural Research, 60(2), 341-348. https://doi.org/10.1080/00218839.2020.1831285

Tan, P. J., Lau, B. F., Krishnasamy, G., Ng, M. F., Husin, L. S., Ruslan, N., ... & Patel, V. (2018). Zebrafish embryonic development-interfering macrolides from Streptomyces californicus impact growth and mitochondrial function in human colorectal cancer cells. Process Biochemistry, 74, 164-174. https://doi.org/10.1016/j.procbio.2018.07.007

Urtgam, S., & Thurnkul, N. (2021). Application of the pigment of actinobacteria isolated from the wasps-nest soil for dyeing silk fibers. Life Sciences and Environment Journal, 22(2), 166-177. https://doi.org/10.14456/lsej.2021.4

Usman, H. M., Abdulkadir, N., Gani, M., Maiturare, H. M. (2017). Bacterial Pigments and its Significance. MOJ Bioequivalence Bioavailab., 4, 285–288. https://doi.org/10.15406/mojbb.2017.04.00073

Vasanthabharathi, V., & Jayalakshmi, S. (2020). Review on melanin from marine actinomycetes. Journal of Basic & Applied Sciences, 16, 39-42. https://doi.org/10.29169/1927-5129.2020.16.05

Vijayabharathi, R., Bruheim, P., Andreassen, T., Raja, D. S., Devi, P. B., Sathyabama, S., & Priyadarisini, V. B. (2011). Assessment of resistomycin, as an anticancer compound isolated and characterized from Streptomyces aurantiacus AAA5. The Journal of Microbiology, 49, 920-926. https://doi.org/10.1007/s12275-011-1260-5.

Wan Yusoff, W. F., Syed Mohamad, S. A., & Wan Ahmad, W. Y. (2014, August 25). Fastness Properties and Color Analysis of Natural Colorants from Actinomycetes Isolates on Silk Fabric [Conference presentation]. Proceedings of the International Colloquium in Textile Engineering, Fashion, Apparel and Design 2014 (ICTEFAD 2014) (pp. 113-118). Singapore: Springer

Werten, S., Rustmeier, N. H., Gemmer, M., Virolle, M. J., & Hinrichs, W. (2019). Structural and biochemical analysis of a phosin from Streptomyces chartreusis reveals a combined polyphosphate and metal binding fold. Federation of European Biochemical Societies letters, 593(15), 2019-2029. https://doi.org/10.1002/1873-3468.13476

Widdick, D., Royer, S. F., Wang, H., Vior, N. M., Gomez-Escribano, J. P., Davis, B. G., & Bibb,M. J. (2018). Analysis of the tunicamycin biosynthetic gene cluster of Streptomyces chartreusis reveals new insights into tunicamycin production and immunity. Antimicrobial agents and chemotherapy, 62(8), Article e00130-18. https://doi.org/10.1128/AAC.00130-18

Williams, N. P., Hinnebusch, A. G., & Donahue, T. F. (1989). Mutations in the structural genes for eukaryotic initiation factors 2 alpha and 2 beta of Saccharomyces cerevisiae disrupt translational control of GCN4 mRNA. Proceedings of the National Academy of Sciences of the United States of America, 86(19), 7515-9. https://doi.org/10.1073/pnas.86.19.7515

Xu, X., Zhao, Y., Bao, K., Miao, C., Zhao, L., Chen, Y., ... & Li, Y. (2022). Purification and characterization of anti-phytopathogenic fungi angucyclinone from soil-derived Streptomyces cellulosae. Folia Microbiologica, 67(3), 517-522. https://doi.org/10.1007/s12223-022-00957-6

Yadav, U. S., Tripathi, R., & Tripathi, M. A. (2022). Global handicraft index: a pioneering approach and developing strategies for promotion completion and Welfare of Artisan in the Digital World. Bank and policy, 2(1), 59-80.

Yang, C. L., Wang, Y. S., Liu, C. L., Zeng, Y. J., Cheng, P., Jiao, R. H., ... & Ge, H. M. (2017). Strepchazolins A and B: two new alkaloids from a marine Streptomyces chartreusis NA02069. Marine drugs, 15(8), Article 244. https://doi.org/10.3390/md15080244

Yaradoddi, J. S., Kontro, M. H., Ganachari, S. V., Banapurmath, N. R., Oli, A., Katti, A. S., & Sulochana, M. B. (2022). Actinobacteria in Marine Environments. In Actinobacteria: Ecology, Diversity, Classification and Extensive Applications (pp. 21-38). Singapore: Springer Nature Singapore.

Yayci, A., Bachmann, N., Dirks, T., Hofmann, E., & Bandow, J. E. (2022). Characterization of three novel DyP‐type peroxidases from Streptomyces chartreusis NRRL 3882. Journal of Applied Microbiology, 133(4):2417-2429. https://doi.org/10.1111/jam.15707

Zhang, H., Zhan, J., Su, K., & Zhang, Y. (2006). A kind of potential food additive produced by Streptomyces coelicolor: characteristics of blue pigment and identification of a novel compound, λ-actinorhodin. Food Chemistry, 95(2), 186-192. https://doi.org/10.1016/j.foodchem.2004.12.028

Zulfa, N. V., Fitroh, M., Santoso, I., & Maryanto, A. E. (2021). Antagonistic potential of Streptomyces cellulosae SM12 against Ganoderma sp. TB3 and Ganoderma sp. TB4. Journal of Physics: Conference Series, 1725, Article 012055. https://doi.org/10.1088/1742-6596/1725/1/012055

Downloads

Published

2023-08-30

How to Cite

Urtgam, S., Sumpradit, T. ., & Thurnkul, N. (2023). Isolation, Identification, and Application of Pigment-Producing Actinobacteria from Stingless Bee Hives for Handicraft Production. Journal of Current Science and Technology, 13(3), 564–573. https://doi.org/10.59796/jcst.V13N3.2023.749

Issue

Section

Research Article

Categories