Diversity of Cellulolytic Bacteria Isolated from Goat Feces in Rayong Province, Eastern Thailand, and Characterization of Their Endoglucanase Activity
DOI:
https://doi.org/10.59796/jcst.V15N2.2025.101Keywords:
bacillus, cellulase-producing bacteria, CMCase, feces, goatAbstract
Bacterial cellulases are crucial for breaking down cellulose, which is essential for various industries. These bacteria are found in the rumen of herbivores including domestic goats. Goat feces show potential as a source of cellulase-producing bacteria, but studies on these bacteria isolated from goat feces in Thailand remain limited. This study isolated and genetically identified cellulase-producing bacteria from goat feces in eastern Thailand. The cellulases produced by the most effective cellulase-producing bacterium were also characterized enzymatically. A total of 30 cellulase-producing bacteria were isolated and classified using PCR-RFLP analysis of the 16S rRNA gene. Thirteen different RFLP patterns were obtained through MspI-AluI digestion, belonging to nine bacterial genera: Acinetobacter, Bacillus, Corynebacterium, Enterococcus, Escherichia, Exiguobacterium, Providencia, Pseudomonas, and Staphylococcus (Mammaliicoccus). The predominant genera of the isolated cellulase-producing bacteria were Escherichia, Exiguobacterium, and Corynebacterium. Several of the isolated bacterial species had limited prior evidence of cellulase production. Bacillus sp. strain FMJ 1105 showed the highest cellulase activity using the CMC agar method and produced CMCase (endoglucanase) activity of 2.67 ± 0.06 U/mL. The optimum temperature and pH for CMCase activity were determined to be 50°C and pH 7.0, with a stability range of 25-70°C and pH 6.0-8.0 over 24 h of incubation. This study provides new insights into cellulase-producing bacteria isolated from goat feces in Thailand, contributing to the understanding of their enzymatic potential.
References
Ahmad, S., Alzahrani, A. J., & Alsaeed, M. (2023). Uncommon association: Pseudomonas luteola bacteremia in an immunocompetent individual with acute tonsillitis-a case report. IDCases, 34, Article e01891. https://doi.org/10.1016/j.idcr.2023.e01891
Arrigo, F., Arfuso, F., Faggio, C., & Piccione, G. (2024). Daily Variation of Body Temperature: An Analysis of Influencing Physiological Conditions. Applied Sciences, 14(13), Article 5413. https://doi.org/10.3390/app14135413
Awadalla, M. S., Ebtsam, Z., Yasin, M. H., & Esmael, A. (2022). Antibacterial activity of some essential plant oils against clinical strain of Corynebacterium stationis. Benha Journal of Applied Sciences, 7(4), 257-261. https://doi.org/10.21608/bjas.2022.260587
Balasubramanian, N., & Simões, N. (2014). Bacillus pumilus S124A carboxymethyl cellulase; a thermo stable enzyme with a wide substrate spectrum utility. International Journal of Biological Macromolecules, 67, 132-139. https://doi.org/10.1016/j.ijbiomac.2014.03.014
Barry, M. (2021). Pseudomonas luteola bacteremia in newly diagnosed systemic lupus erythematosus. Case Reports in Infectious Diseases, 2021(1), Article 4051378. https://doi.org/10.1155/2021/4051378
Basnet, A., & Kilonzo-Nthenge, A. (2024). Antibiogram profiles of pathogenic and commensal bacteria in goat and sheep feces on smallholder farm. Frontiers in Antibiotics, 3, Article 1351725. https://doi.org/10.3389/frabi.2024.1351725
Behera, B. C., Sethi, B. K., Mishra, R. R., Dutta, S. K., & Thatoi, H. N. (2017). Microbial cellulases–Diversity & biotechnology with reference to mangrove environment: A review. Journal of Genetic Engineering and Biotechnology, 15(1), 197-210. https://doi.org/10.1016/j.jgeb.2016.12.001
Beukers, A. G., Zaheer, R., Goji, N., Amoako, K. K., Chaves, A. V., Ward, M. P., & McAllister, T. A. (2017). Comparative genomics of Enterococcus spp. isolated from bovine feces. BMC Microbiology, 17(1), Article 52. https://doi.org/10.1186/s12866-017-0962-1
Boontanom, P., & Chantarasiri, A. (2021). Diversity and cellulolytic activity of culturable bacteria isolated from the gut of higher termites (Odontotermes sp.) in eastern Thailand. Biodiversitas, 22(8), 3349-3357. https://doi.org/10.13057/biodiv/d220831
Bourafa, N., Loucif, L., Boutefnouchet, N., & Rolain, J. M. (2015). Enterococcus hirae, an unusual pathogen in humans causing urinary tract infection in a patient with benign prostatic hyperplasia: first case report in Algeria. New Microbes and New Infections, 8(C), 7-9. https://doi.org/10.1016/j.nmni.2015.08.003
Chantarasiri, A. (2015). Aquatic Bacillus cereus JD0404 isolated from the muddy sediments of mangrove swamps in Thailand and characterization of its cellulolytic activity. Egyptian Journal of Aquatic Research, 41(3), 257-264. https://doi.org/10.1016/j.ejar.2015.08.003
Chantarasiri, A. (2020). Diversity of cellulolytic bacteria isolated from a freshwater wetland reserve in Thailand and their cellulolytic activity. Applied Ecology and Environmental Research, 18(4), 5965-5983. https://doi.org/10.15666/aeer/1804_59655983
Chantarasiri, A. (2021). Diversity and activity of aquatic cellulolytic bacteria isolated from sedimentary water in the littoral zone of Tonle Sap Lake, Cambodia. Water, 13, Article 1797. https://doi.org/10.3390/w13131797
Chauhan, M., Kimothi, A., Sharma, A., & Pandey, A. (2023). Cold adapted Pseudomonas: ecology to biotechnology. Frontiers in Microbiology, 14, Article 1218708. https://doi.org/10.3389/fmicb.2023.1218708
Chavda, N. R., Patel, P. H., & Chaudhary, R. K. (2023). Isolation and production of cellulase from bacteria using agro waste. Biosciences Biotechnology Research Asia, 20(4), 1467-1479. http://dx.doi.org/10.13005/bbra/3192
Chen, B., Zeng, Y., Wang, J., Lei, M., Gan, B., Wan, Z., & Zeng, D. (2024). Targeted screening of fiber-degrading bacteria with probiotic function in herbivore feces. Probiotics and Antimicrobial Proteins, 16(1), 1-25. https://doi.org/10.1007/s12602-024-10215-5
Cheng, J., Huang, S., Jiang, H., Zhang, Y., Li, L., Wang, J., & Fan, C. (2016). Isolation and characterization of a non-specific endoglucanase from a metagenomic library of goat rumen. World Journal of Microbiology and Biotechnology, 32, Article 12. https://doi.org/10.1007/s11274-015-1957-4
Crone, S., Vives‐Flórez, M., Kvich, L., Saunders, A. M., Malone, M., Nicolaisen, M. H., ... & Bjarnsholt, T. (2020). The environmental occurrence of Pseudomonas aeruginosa. Acta Pathologica et Microbiologica Scandinavica, 128(3), 220-231. https://doi.org/10.1111/apm.13010
Croos, A. M. B., Rajendran, S., & Ranganathan, K. (2019). Isolation of a cellulase producing Bacillus cereus from cow dung and determination of the kinetic properties of the crude enzyme. Journal of the National Science Foundation of Sri Lanka, 47(2), 261-267. https://doi.org/10.4038/jnsfsr.v47i2.9168
Dewiyanti, I., Darmawi, D., Muchlisin, Z. A., & Helmi, T. Z. (2024). Analyzing cellulolytic bacteria diversity in mangrove ecosystem soil using 16 svedberg ribosomal ribonucleic acid gene. Global Journal of Environmental Science and Management, 10(1), 51-68. https://doi.org/10.22034/gjesm.2024.01.05
Dewiyanti, I., Darmawi, D., Muchlisin, Z. A., Helmi, T. Z., Arisa, T. T., Rahmiati, R., & Destri, E. (2022). Cellulase enzyme activity of the bacteria isolated from mangrove ecosystem in Aceh Besar and Banda Aceh. IOP Conference Series: Earth and Environmental Science, 951, 012113. https://doi.org/10.1088/1755-1315/951/1/012113
Dini, I. R., & Wiranda, A. (2024). Test of Several Concentrations of Cellulolytic Bacteria and Size of Shredded Material on the Maturity Speed of Rice Straw Compost (Oryza sativa L.). KnE Social Sciences, 396-410. https://doi.org/10.18502/kss.v9i25.16990
Ejaz, U., Sohail, M., & Ghanemi, A. (2021). Cellulases: from bioactivity to a variety of industrial applications. Biomimetics, 6(3), 44-50. https://doi.org/10.3390/biomimetics6030044
Flimban, S., Oh, S. E., Joo, J. H., & Hussein, K. A. (2019). Characterization and identification of cellulose-degrading bacteria isolated from a microbial fuel cell reactor. Biotechnology and Bioprocess Engineering, 24, 622-631. https://doi.org/10.1007/s12257-019-0089-3
Gao, D., Luan, Y., Liang, Q., & Qi, Q. (2016). Exploring the N‐terminal role of a heterologous protein in secreting out of Escherichia coli. Biotechnology and Bioengineering, 113(12), 2561-2567. https://doi.org/10.1002/bit.26028
Gaudiano, R., Trizzino, M., Torre, S., Virruso, R., Fiorino, F., Argano, V., & Cascio, A. (2023). Enterococcus hirae mitral valve infectious endocarditis: a case report and review of the literature. Antibiotics, 12(8), Article 1232. https://doi.org/10.3390/antibiotics12081232
Gunavathy, P. & Boominathan, M. (2015). Isolation and molecular characterization of cellulase producing bacteria from soil of Sacred Grove, Puducherry, India. International Journal of Current Microbiology and Applied Sciences, 4(12), 584-590.
Ikram, H., Khan, H. A., Ali, H., Liu, Y., Kiran, J., Ullah, A., ... & Gul, A. (2022). Evaluation, characterization and molecular analysis of cellulolytic bacteria from soil in Peshawar, Pakistan. Microbiology and Biotechnology Letters, 50(2), 245-254. https://doi.org/10.48022/mbl.2201.01006
Jing, S., Cao, X., Zhong, L., Peng, X., Sun, R., & Liu, J. (2018). Effectively enhancing conversion of cellulose to HMF by combining in-situ carbonic acid from CO2 and metal oxides. Industrial Crops and Products, 126, 151-157. https://doi.org/10.1016/j.indcrop.2018.10.028
Juturu, V. & Wu, J. C. (2014). Microbial cellulases: engineering, production and applications. Renewable and Sustainable Energy Reviews, 33, 188-203. https://doi.org/10.1016/j.rser.2014.01.077
Kamal, F. B., Sadida, F. F., & Manchur, M. A. (2020). Isolation and characterization of cellulolytic Pseudomonas aeruginosa from teak forest soil for its cellulase production and cellulolytic activity. Chittagong University Journal of Biological Sciences, 10(1-2), 167-179. https://doi.org/10.3329/cujbs.v10i1.74252
Kee, C., Junqueira, A. C. M., Uchida, A., Purbojati, R. W., Houghton, J. N., Chénard, C., ... & Schuster, S. C. (2018). Complete genome sequence of Acinetobacter schindleri SGAir0122 isolated from Singapore air. Genome Announcements, 6(26), 10-1128. https://doi.org/10.1128/genomeA.00567-18
Kinose, K., Shinoda, K., Konishi, T., & Kawasaki, H. (2024). Mutational analysis in Corynebacterium stationis MFS transporters for improving nucleotide bioproduction. Applied Microbiology and Biotechnology, 108(1), Article 251. https://doi.org/10.1007/s00253-024-13080-y
Lee, K. T., Toushik, S. H., Baek, J. Y., Kim, J. E., Lee, J. S., & Kim, K. S. (2018). Metagenomic mining and functional characterization of a novel KG51 bifunctional cellulase/hemicellulase from black goat rumen. Journal of Agricultural and Food Chemistry, 66(34), 9034-9041. https://doi.org/10.1021/acs.jafc.8b01449
Listyaningrum, N. P., Sutrisno, A., & Wardani, A. K. (2018). Characterization of thermostable cellulase produced by Bacillus strains isolated from solid waste of carrageenan. IOP Conference Series: Earth and Environmental Science, 131, Article 012043. https://doi.org/10.1088/1755-1315/131/1/012043
Lu, J., Wang, J., Gao, Q., Li, D., Chen, Z., Wei, Z., ... & Wang, F. (2021). Effect of microbial inoculation on carbon preservation during goat manure aerobic composting. Molecules, 26(15), Article 4441. https://doi.org/10.3390/molecules26154441
Madhaiyan, M., Wirth, J. S., & Saravanan, V. S. (2020). Phylogenomic analyses of the Staphylococcaceae family suggest the reclassification of five species within the genus Staphylococcus as heterotypic synonyms, the promotion of five subspecies to novel species, the taxonomic reassignment of five Staphylococcus species to Mammaliicoccus gen. nov., and the formal assignment of Nosocomiicoccus to the family Staphylococcaceae. International Journal of Systematic and Evolutionary Microbiology, 70(11), 5926-5936. https://doi.org/10.1099/ijsem.0.004498
Malik, W. A., & Javed, S. (2021). Biochemical characterization of cellulase from Bacillus subtilis strain and its effect on digestibility and structural modifications of lignocellulose rich biomass. Frontiers in Bioengineering and Biotechnology, 9, Article 800265. https://doi.org/10.3389/fbioe.2021.800265
Mandeep, Liu, H., & Shukla, P. (2021). Synthetic biology and biocomputational approaches for improving microbial endoglucanases toward their innovative applications. ACS Omega, 6(9), 6055-6063. https://doi.org/10.1021/acsomega.0c05744
Menendez, E., Garcia-Fraile, P., & Rivas, R. (2015). Biotechnological applications of bacterial cellulases. AIMS Bioengineering, 2(3), 163-182. https://doi.org/10.3934/bioeng.2015.3.163
Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426-428. https://doi.org/10.1021/ac60147a030
Narkthewan, P. & Makkapan, W. (2019). Cellulase activity of Bacillus velezensis isolated from soil in a dairy farm. IOP Conference Series: Earth and Environmental Science, 346, Article 012040. https://doi.org/10.1088/1755-1315/346/1/012040
Pang, J., Liu, Z. Y., Hao, M., Zhang, Y. F., & Qi, Q. S. (2017). An isolated cellulolytic Escherichia coli from bovine rumen produces ethanol and hydrogen from corn straw. Biotechnology for Biofuels, 10, Article 165. https://doi.org/10.1186/s13068-017-0852-7
Photphisutthiphong, Y. & Vatanyoopaisarn, S. (2019). Dyadobacter and Sphingobacterium isolated from herbivore manure in Thailand and their cellulolytic activity in various organic waste substrates. Agriculture and Natural Resources, 53(2), 89-98. https://doi.org/10.34044/j.anres.2019.53.2.01
Pralomkarn, W., Supakorn, C., & Boonsanit, D. (2012). Knowledge in goats in Thailand. Walailak Journal of Science and Technology, 9(2), 93‐105.
Ranjan, R., Rai, R., Bhatt, S. B., & Dhar, P. (2023). Technological road map of cellulase: a comprehensive outlook to structural, computational, and industrial applications. Biochemical Engineering Journal, 198, Article 109020. https://doi.org/10.1016/j.bej.2023.109020
Sapkota, S., Karn, M., Regmi, S. M., Thapa, S., Miya, F. U., & Yonghang, S. (2021). Providencia rettgeri infection complicating cranial surgery: illustrative cases. Journal of Neurosurgery: Case Lessons, 2(8), Article CASE21318. https://doi.org/10.3171/CASE21318
Scaccabarozzi, L., Leoni, L., Ballarini, A., Barberio, A., Locatelli, C., Casula, A., ... & Moroni, P. (2015). Pseudomonas aeruginosa in dairy goats: genotypic and phenotypic comparison of intramammary and environmental isolates. PloS one, 10(11), Article e0142973. https://doi.org/10.1371/journal.pone.0142973
Seo, J. K., Park, T. S., Kwon, I. H., Piao, M. Y., Lee, C. H., & Ha, J. K. (2013). Characterization of cellulolytic and xylanolytic enzymes of Bacillus licheniformis JK7 isolated from the rumen of a native Korean goat. Asian-Australasian Journal of Animal Sciences, 26(1), 50-58. https://doi.org/10.5713/ajas.2012.12506
Shang, Z., Liu, S., Duan, Y., Bao, C., Wang, J., Dong, B., & Cao, Y. (2022). Complete genome sequencing and investigation on the fiber-degrading potential of Bacillus amyloliquefaciens strain TL106 from the tibetan pig. BMC microbiology, 22(1), Article 186. https://doi.org/10.1186/s12866-022-02599-7
Sharma, S., & Wadhwa, N. (2023). Characterization of banana fibers extracted with pectinase from Staphylococcus sciuri. Current Applied Science and Technology, 23, 1-12. https://doi.org/10.55003/cast.2023.05.23.010
Singh, S., Bhardwaj, S., Tiwari, P., Dev, K., Ghosh, K., & Maji, P. K. (2024). Recent advances in cellulose nanocrystals-based sensors: a review. Materials Advances, 5(7), 2622-2654. https://doi.org/10.1039/d3ma00601h
Singh, S., Moholkar, V. S., & Goyal, A. (2013). Isolation, identification, and characterization of a cellulolytic Bacillus amyloliquefaciens strain SS35 from rhinoceros dung. International Scholarly Research Notices, 2013(1), Article 728134. https://doi.org/10.1155/2013/728134
Singhania, R. R., Ruiz, H. A., Awasthi, M. K., Dong, C. D., Chen, C. W., & Patel, A. K. (2021). Challenges in cellulase bioprocess for biofuel applications. Renewable and Sustainable Energy Reviews, 151, Article 111622. https://doi.org/10.1016/j.rser.2021.111622
Siqueira, J. G. W., Rodrigues, C., de Souza Vandenberghe, L. P., Woiciechowski, A. L., & Soccol, C. R. (2020). Current advances in on-site cellulase production and application on lignocellulosic biomass conversion to biofuels: a review. Biomass and Bioenergy, 132, Article 105419. https://doi.org/10.1016/j.biombioe.2019.105419
Solanki, P., Putatunda, C., Kumar, A., Bhatia, R., & Walia, A. (2021). Microbial proteases: ubiquitous enzymes with innumerable uses. 3 Biotech, 11(10), Article 428. https://doi.org/10.1007/s13205-021-02928-z
Song, Y. H., Lee, K. T., Baek, J. Y., Kim, M. J., Kwon, M. R., Kim, Y. J., ... & Kim, K. S. (2017a). Isolation and characterization of a novel endo-β-1, 4-glucanase from a metagenomic library of the black-goat rumen. Brazilian Journal of Microbiology, 48(4), 801-808. https://doi.org/10.1016/j.bjm.2017.03.006
Song, Y. H., Lee, K. T., Baek, J. Y., Kim, M. J., Kwon, M. R., Kim, Y. J., ... & Kim, K. S. (2017b). Isolation and characterization of a novel glycosyl hydrolase family 74 (GH74) cellulase from the black goat rumen metagenomic library. Folia Microbiologica, 62, 175-181. https://doi.org/10.1007/s12223-016-0486-3
Srivastava, S., & Mathur, G. (2023). Bacterial cellulose: a multipurpose biomaterial for manmade world. Current Applied Science and Technology, 23, 1-19. https://doi.org/10.55003/cast.2022.03.23.014
Sultana, S., Sawrav, M. S. S., Das, S. R., Alam, M., Aziz, M. A., Hossain, M. A. A., & Haque, M. A. (2022). Isolation and biochemical characterization of cellulase producing goat rumen bacteria. AIJR Proceedings, 93-101. https://doi.org/10.21467/proceedings.123
Sulyman, A. O., Igunnu, A., & Malomo, S. O. (2020). Isolation, purification and characterization of cellulase produced by Aspergillus niger cultured on Arachis hypogaea shells. Heliyon, 6(12), Article e05668. https://doi.org/10.1016/j.heliyon.2020.e05668
Sutaoney, P., Rai, S. N., Sinha, S., Choudhary, R., Gupta, A. K., Singh, S. K., & Banerjee, P. (2024). Current perspective in research and industrial applications of microbial cellulases. International Journal of Biological Macromolecules, 264(1), Article 130639. https://doi.org/10.1016/j.ijbiomac.2024.130639
Tedesco, P., Palma Esposito, F., Masino, A., Vitale, G. A., Tortorella, E., Poli, A., ... & de Pascale, D. (2021). Isolation and characterization of strain Exiguobacterium sp. KRL4, a producer of bioactive secondary metabolites from a Tibetan glacier. Microorganisms, 9(5), Article 890. https://doi.org/10.3390/microorganisms9050890
Thapa, S., Zhou, S., O’Hair, J., Al Nasr, K., Ropelewski, A., & Li, H. (2023). Exploring the microbial diversity and characterization of cellulase and hemicellulase genes in goat rumen: a metagenomic approach. BMC biotechnology, 23(1), Article 51. https://doi.org/10.1186/s12896-023-00821-6
Thakur, K., Yadav, U., & Gawade, T. (2022). The comparative study between cellulase enzyme extracted from goat and gold fish. International Journal of Advanced Research in Science, Communication and Technology, 2(3), 288-291. https://doi.org/10.48175/IJARSCT-6854
Thongmee, A., & Sukplang, P. (2024). Identification of indigenous bacterial strains from Thai agricultural fields for potential bioremediation of carbofuran. Journal of Current Science and Technology, 14(3), Article 74. https://doi.org/10.59796/jcst.V14N3.2024.74
Verma, R. & Baroco, A. L. (2017). Acinetobacter radioresistens septicemia associated with pneumonia in a patient with chronic obstructive pulmonary disease and hepatitis C. Infectious Diseases in Clinical Practice, 25(4), e12-e13. https://doi.org/10.1097/IPC.0000000000000521
Wang, T., Costa, V., Jenkins, S. G., Hartman, B. J., & Westblade, L. F. (2019). Acinetobacter radioresistens infection with bacteremia and pneumonia. IDCases, 15, Article e00495. https://doi.org/10.1016/j.idcr.2019.e00495
Wei, W. & Wu, S. (2017). Depolymerization of cellulose into high-value chemicals by using synergy of zinc chloride hydrate and sulfate ion promoted titania catalyst. Bioresource Technology, 241, 760-766. https://doi.org/10.1016/j.biortech.2017.06.004
Yang, P., Kobayashi, H., & Fukuoka, A. (2011). Recent developments in the catalytic conversion of cellulose into valuable chemicals. Chinese Journal of Catalysis, 32(5), 716-722. https://doi.org/10.1016/S1872-2067(10)60232-X
Yabushita, M., Kobayashi, H., & Fukuoka, A. (2014). Catalytic transformation of cellulose into platform chemicals. Applied Catalysis B: Environmental, 145, 1-9. https://doi.org/10.1016/j.apcatb.2013.01.052
Yazdansetad, S., Taheri, R., & Ajoudanifar, H. (2015). Production of microbial cellulose by native species of Pseudomonas luteola. New Cellular and Molecular Biotechnology Journal, 5(19), 53-60.
Zaidi, S. E. Z., Zaheer, R., Barbieri, R., Cook, S. R., Hannon, S. J., Booker, C. W., ... & McAllister, T. A. (2022). Genomic characterization of Enterococcus hirae from beef cattle feedlots and associated environmental continuum. Frontiers in Microbiology, 13, Article 859990. https://doi.org/10.3389/fmicb.2022.859990
Zeman, M., Mašlaňová, I., Indráková, A., Šiborová, M., Mikulášek, K., Bendíčková, K., ... & Pantůček, R. (2017). Staphylococcus sciuri bacteriophages double-convert for staphylokinase and phospholipase, mediate interspecies plasmid transduction, and package mecA gene. Scientific Reports, 7(1), Article 46319. https://doi.org/10.1038/srep46319
Zhou, L., Gao, D., Ma, Y., Li, H., Su, Y., Yang, X., & Lu, T. (2021). Depolymerization of cellulose promoted by lignin via oxidation-hydrolysis route. Industrial Crops and Products, 174, Article 114179. https://doi.org/10.1016/j.indcrop.2021.114179
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2025 Journal of Current Science and Technology

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.