Comparison of myxovirus resistance gene 2 expression among adult and juvenile SLE Iraqi patients

Authors

  • Sahar Aldhahir Department of Medical Laboratory Techniques, College of Health and Medical Techniques, Middle Technical University, Iraq
  • Izzat A. M. Al-Rayahi Department of Medical Laboratory Techniques, College of Health and Medical Techniques, Middle Technical University, Iraq
  • Salwa S. Muhsin Department of Community Health Medical Technical Institute, Middle Technical University, Iraq

DOI:

https://doi.org/10.59796/jcst.V15N2.2025.97

Keywords:

juvenile-onset SLE, adult-onset SLE, MX2 gene

Abstract

Abstract

Systemic lupus erythematosus (SLE) is an autoimmune disease that affects multiple systems in the body. The disease may also impact juveniles (jSLE), but are less frequent. SLE is characterized by the excessive production of auto-antibodies, and genetic background that is not fully comprehended. The human Mxyovirus resistance gene (MX2), classified as an immune regulatory gene, has not yet been researched in juvenile-onset-SLE. There are only a few studies on its connection to rheumatic disease in adults. The current study aimed to investigate its expression and its correlation with disease activity in different ages. This study included 50 patients with SLE, 25 adults and 25 juveniles who all met the ACR criteria, and a control group of 30 healthy individuals, Total RNA was obtained by PBMCs from fresh whole blood samples of all participants to detect human (MX2) levels through quantitative real-time polymerase chain reaction (qRT-PCR), and disease activity was assessed using the systemic erythematosus disease activity index score 2000. The human (MX2) gene was overexpressed in all percipients involved, and there were no statistical differences between the studied group in expression rate p=0.76, There was a non-significant p=0.092 weak negative correlation r=-0.351 between the fold of gene expression and the SLEDAI-2k score. The SLEDAI-2k of (jSLE) and (aSLE) indicated a statistically significant difference between the two groups (p=0.04). Understanding the genes linked to SLE is extremely important, as MX2 could potentially serve as a diagnostic marker, and may also lead to further research opportunities.

Author Biographies

Izzat A. M. Al-Rayahi, Department of Medical Laboratory Techniques, College of Health and Medical Techniques, Middle Technical University, Iraq

Professor of immunology, Middle Technical University.

Department of Medical Laboratory Techniques.

 

Salwa S. Muhsin, Department of Community Health Medical Technical Institute, Middle Technical University, Iraq

Prof. Dr Salwa S. Muhsin
Department of Community / Medical Technical Institute/ Baghdad
Middle Technical /University /Iraq (MTU)

References

Abd El Monem Teama, M., Adham El-Mohamdy, M., Abdellah Abdullah Mahmoud, F., & Mohammed Badr, F. (2021). Autoantibody Profile of Egyptian Juvenile Systemic Lupus Erythematosus Patients and Its Association with Clinical Characteristics and Disease Activity. Open Access Rheumatology: Research and Reviews, 13, 201-212. https://doi.org/10.2147/OARRR.S317315

Al-Rayahi, I. A. M., Browning, M. J., & Stover, C. (2017). Tumour cell conditioned medium reveals greater M2 skewing of macrophages in the absence of properdin. Immunity, Inflammation and Disease, 5(1), 68–77. https://doi.org/10.1002/iid3.142

Avar-Aydın, P. Ö., & Brunner, H. I. (2024). Revisiting Childhood-Onset Systemic Lupus Erythematosus. Turkish Archives of Pediatrics, 59(4), 336-344. https://doi.org/10.5152/TurkArchPediatr.2024.24097

Betancor, G., Jimenez-Guardeño, J. M., Lynham, S., Antrobus, R., Khan, H., Sobala, A., ... & Malim, M. H. (2021). MX2-mediated innate immunity against HIV-1 is regulated by serine phosphorylation. Nature microbiology, 6(8), 1031-1042. https://doi.org/10.1038/s41564-021-00937-5

Cary, N. (2012). Statistical analysis system, User's guide. Statistical. Version 9. SAS. Inst. Inc. USA.

Catalina, M. D., Owen, K. A., Labonte, A. C., Grammer, A. C., & Lipsky, P. E. (2020). The pathogenesis of systemic lupus erythematosus: harnessing big data to understand the molecular basis of lupus. Journal of Autoimmunity, 110, Article 102359. https://doi.org/10.1016/j.jaut.2019.102359

Ceccarelli, F., Natalucci, F., Olivieri, G., Perricone, C., Pirone, C., Spinelli, F. R., ... & Conti, F. (2021). Erosive arthritis in systemic lupus erythematosus: not only Rhupus. Lupus, 30(13), 2029-2041. https://doi.org/10.1177/09612033211051637

Charras, A. M. A. N. D. I. N. E., Smith, E., & Hedrich, C. M. (2021). Systemic lupus erythematosus in children and young people. Current Rheumatology Reports, 23(20), 1-15. https://doi.org/10.1007/s11926-021-00985-0

Cooles, F. A., & Isaacs, J. D. (2022). The interferon gene signature as a clinically relevant biomarker in autoimmune rheumatic disease. The Lancet Rheumatology, 4(1), e61-e72. https://doi.org/10.1016/S2665-9913(21)00254-X

Coss, S. L., Zhou, D., Chua, G. T., Aziz, R. A., Hoffman, R. P., Wu, Y. L., ... & Yu, C. Y. (2023). The complement system and human autoimmune diseases. Journal of autoimmunity, 137, Article 102979. https://doi.org/10.1016/j.jaut.2022.102979

Damoiseaux, J., & van Beers, J. (2023). Autoantibodies to dsDNA in the diagnosis, classification and follow-up of patients with systemic lupus erythematosus. Journal of Translational Autoimmunity, 6, Article 100191. https://doi.org/10.1016/j.jtauto.2023.100191

Demers-Mathieu, V. (2023). Optimal selection of IFN-α-inducible genes to determine type I interferon signature improves the diagnosis of systemic lupus erythematosus. Biomedicines, 11(3), Article 864. https://doi.org/10.3390/biomedicines11030864

Deng, Y., & Tsao, B. P. (2017). Updates in lupus genetics. Current Rheumatology Reports, 19, 1-13. https://doi.org/10.1007/s11926-017-0695-z

Dey, M., Parodis, I., & Nikiphorou, E. (2021). Fatigue in systemic lupus erythematosus and rheumatoid arthritis: a comparison of mechanisms, measures and management. Journal of Clinical Medicine, 10(16), Article 3566. https://doi.org/10.3390/jcm10163566

Dicks, M. D., Goujon, C., Pollpeter, D., Betancor, G., Apolonia, L., Bergeron, J. R., & Malim, M. H. (2016). Oligomerization requirements for MX2-mediated suppression of HIV-1 infection. Journal of Virology, 90(1), 22-32. https://doi.org/10.1128/jvi.02247-15

El-Garf, K., El-Garf, A., Gheith, R., Badran, S., Salah, S., Marzouk, H., Farag, Y., Khalifa, I., & Mostafa, N. (2021). A comparative study between the disease characteristics in adult-onset and childhood-onset systemic lupus erythematosus in Egyptian patients attending a large university hospital. Lupus, 30(2), 211–218. https://doi.org/10.1177/0961203320972778

Gilliam, B. E., Ombrello, A. K., Burlingame, R. W., Pepmueller, P. H., & Moore, T. L. (2012). Measurement of Autoantibodies in Pediatric-Onset Systemic Lupus Erythematosus and Their Relationship with Disease-Associated Manifestations. Seminars in Arthritis and Rheumatism, 41(6), 840-848. https://doi.org/10.1016/j.semarthrit.2011.09.009

Gladman, D. D., Ibaņez, D., & Urowitz, M. B. (2002). Systemic lupus erythematosus disease activity index 2000. The Journal of Rheumatology, 29(2), 288-291.

Gounden, V., Bhatt, H., & Jialal, I. (2024). Renal function tests. StatPearls. StatPearls Publishing. Retrived from https://www.ncbi.nlm.nih.gov/sites/books/NBK507821/

Haller, O., Staeheli, P., Schwemmle, M., & Kochs, G. (2015). Mx GTPases: dynamin-like antiviral machines of innate immunity. Trends in Microbiology, 23(3), 154-163. https://doi.org/10.1016/j.tim.2014.12.003

Hochberg, M. C. (1997). Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis and Rheumatism, 40(9), 1725-1725. https://doi.org/10.1002/art.1780400928

Hsu, T. C., Yang, Y. H., Wang, L. C., Lee, J. H., Yu, H. H., Lin, Y. T., ... & Chiang, B. L. (2023). Risk factors for subsequent lupus nephritis in patients with juvenile-onset systemic lupus erythematosus: a retrospective cohort study. Pediatric Rheumatology, 21(1), Article 28. https://doi.org/10.1186/s12969-023-00806-x

Jawad kadhum, M. A., Al-timari, U. S. & Al-Rayahi, I. A. (2021). Assessments of Biochemical, Immunological and Hematological Parameters in Iraqi Pediatrics SLE patient’s Compared to Healthy Controls. Al-Nisour Journal for Medical Sciences, 3(1), 63-77. https://doi.org/10.70492/2664-0554.1059

Jiang, Q., Li, R. X., & Hu, P. (2022). Raynaud’s phenomenon in childhood-onset systemic lupus erythematous. Archives of Medical Science: AMS, 18(6), 1716. https://doi.org/10.5114/aoms/153469

Juraleviciute, M., Nsengimana, J., Newton-Bishop, J., Hendriks, G. J., & Slipicevic, A. (2021). MX2 mediates establishment of interferon response profile, regulates XAF1, and can sensitize melanoma cells to targeted therapy. Cancer Medicine, 10(8), 2840-2854. https://doi.org/10.1002/cam4.3846

Juraleviciute, M., Pozniak, J., Nsengimana, J., Harland, M., Randerson‐Moor, J., Wernhoff, P., ... & Slipicevic, A. (2020). MX 2 is a novel regulator of cell cycle in melanoma cells. Pigment Cell & Melanoma Research, 33(3), 446-457. https://doi.org/10.1111/pcmr.12837

Justiz Vaillant, A. A., Goyal, A., & Varacallo, M. (2023). Systemic Lupus Erythematosus StatPearls: StatPearls Publishing Copyright © 2023, StatPearls Publishing LLC.

Kim, H., Levy, D. M., Silverman, E. D., Hitchon, C., Bernatsky, S., Pineau, C., ... & Pope, J. E. (2019). A comparison between childhood and adult onset systemic lupus erythematosus adjusted for ethnicity from the 1000 Canadian Faces of Lupus Cohort. Rheumatology, 58(8), 1393-1399. https://doi.org/10.1093/rheumatology/kez006

Landolt-Marticorena, C., Bonventi, G., Lubovich, A., Ferguson, C., Unnithan, T., Su, J., ... & Wither, J. (2009). Lack of association between the interferon-α signature and longitudinal changes in disease activity in systemic lupus erythematosus. Annals of the Rheumatic Diseases, 68(9), 1440-1446. https://doi.org/10.1136/ard.2008.093146

Lang, R., Li, H., Luo, X., Liu, C., Zhang, Y., Guo, S., ... & Yu, Y. (2022). Expression and mechanisms of interferon-stimulated genes in viral infection of the central nervous system (CNS) and neurological diseases. Frontiers in Immunology, 13, Article 1008072. https://doi.org/10.3389/fimmu.2022.1008072

Lao, C., White, D., Rabindranath, K., Van Dantzig, P., Foxall, D., Aporosa, A., & Lawrenson, R. (2023). Incidence and prevalence of systemic lupus erythematosus in New Zealand from the national administrative datasets. Lupus, 32(8), 1019-1027. https://doi.org/10.1177/09612033231182203

Liu, J., Berthier, C. C., & Kahlenberg, J. M. (2017). Enhanced Inflammasome Activity in Systemic Lupus Erythematosus Is Mediated via Type I Interferon–Induced Up-Regulation of Interferon Regulatory Factor 1. Arthritis & rheumatology, 69(9), 1840-1849. https://doi.org/10.1002/art.40166

Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25(4), 402-408. https://doi.org/10.1006/meth.2001.1262

Massias, J. S., Smith, E. M. D., Al-Abadi, E., Armon, K., Bailey, K., Ciurtin, C., ... & Hedrich, C. M. (2020). Clinical and laboratory characteristics in juvenile-onset systemic lupus erythematosus across age groups. Lupus, 29(5), 474-481. https://doi.org/10.1177/0961203320909156

Meng, X. W., Cheng, Z. L., Lu, Z. Y., Tan, Y. N., Jia, X. Y., & Zhang, M. (2022). MX2: identification and systematic mechanistic analysis of a novel immune-related biomarker for systemic lupus erythematosus. Frontiers in Immunology, 13, Article 978851. https://doi.org/10.3389/fimmu.2022.978851

Moschonas, G. D., Delhaye, L., Cooreman, R., Hüsers, F., Bhat, A., Sutter, D. D., ... & Saelens, X. (2023). MX2 restricts HIV-1 and herpes simplex virus type 1 by forming cytoplasmic biomolecular condensates that mimic nuclear pore complexes. BioRxiv, 2023-06. https://doi.org/10.1101/2023.06.22.545931

Mummert, E., Fritzler, M. J., Sjöwall, C., Bentow, C., & Mahler, M. (2018). The clinical utility of anti-double-stranded DNA antibodies and the challenges of their determination. Journal of Immunological Methods, 459, 11-19. https://doi.org/10.1016/j.jim.2018.05.014

Nandakumar, K. S., & Nündel, K. (2022). Systemic lupus erythematosus-predisposition factors, pathogenesis, diagnosis, treatment and disease models. Frontiers In Immunology, 13, Article 1118180. https://doi.org/10.3389/fimmu.2022.1118180

Nikpour, M., Dempsey, A. A., Urowitz, M. B., Gladman, D. D., & Barnes, D. A. (2008). Association of a gene expression profile from whole blood with disease activity in systemic lupus erythaematosus. Annals of the Rheumatic Diseases, 67(8), 1069-1075. https://doi.org/10.1136/ard.2007.074765

Oon, S., Wilson, N. J., & Wicks, I. (2016). Targeted therapeutics in SLE: emerging strategies to modulate the interferon pathway. Clinical & Translational Immunology, 5(5), Article e79. https://doi.org/10.1038/cti.2016.26

Orme, M. E., Voreck, A., Aksouh, R., & Schreurs, M. W. J. (2022). Anti-dsDNA Testing Specificity for Systemic Lupus Erythematosus: A Systematic Review. The Journal of Applied Laboratory Medicine, 7(1), 221-239. https://doi.org/10.1093/jalm/jfab146

Palanichamy, A., Bauer, J. W., Yalavarthi, S., Meednu, N., Barnard, J., Owen, T., ... & Anolik, J. H. (2014). Neutrophil-mediated IFN activation in the bone marrow alters B cell development in human and murine systemic lupus erythematosus. The Journal of Immunology, 192(3), 906-918. https://doi.org/10.4049/jimmunol.1302112

Petri, M., Fu, W., Ranger, A., Allaire, N., Cullen, P., Magder, L. S., & Zhang, Y. (2019). Association between changes in gene signatures expression and disease activity among patients with systemic lupus erythematosus. BMC Medical Genomics, 12(4), 1-9. https://doi.org/10.1186/s12920-018-0468-1

Pinheiro, S. V. B., Dias, R. F., Fabiano, R. C. G., & Araujo, S. D. A. (2018). Pediatric lupus nephritis. Brazilian Journal of Nephrology, 41, 252-265. https://doi.org/10.1590/2175-8239-jbn-2018-0097

Pisetsky, D. S., Bossuyt, X., & Meroni, P. L. (2019). ANA as an entry criterion for the classification of SLE. Autoimmunity Reviews, 18(12), 102400. https://doi.org/10.1016/j.autrev.2019.102400

Postal, M., Vivaldo, J. F., Fernandez-Ruiz, R., Paredes, J. L., Appenzeller, S., & Niewold, T. B. (2020). Type I interferon in the pathogenesis of systemic lupus erythematosus. Current Opinion in Immunology, 67, 87-94. https://doi.org/10.1016/j.coi.2020.10.014

Qian, D., Liu, L., Zhu, T., Wen, L., Zhu, Z., Yin, X., ... & Zhang, X. (2020). JAK2 and PTPRC mRNA expression in peripheral blood mononuclear cells from patients with systemic lupus erythematosus. Clinical Rheumatology, 39, 443-448. https://doi.org/10.1007/s10067-019-04778-w

Rahman, S., Sagar, D., Hanna, R. N., Lightfoot, Y. L., Mistry, P., Smith, C. K., ... & Casey, K. A. (2019). Low-density granulocytes activate T cells and demonstrate a non-suppressive role in systemic lupus erythematosus. Annals of the Rheumatic Diseases, 78(7), 957-966. https://doi.org/10.1136/annrheumdis-2018-214620

Robinson, G. A., Peng, J., Dönnes, P., Coelewij, L., Naja, M., Radziszewska, A., ... & Jury, E. C. (2020). Disease-associated and patient-specific immune cell signatures in juvenile-onset systemic lupus erythematosus: patient stratification using a machine-learning approach. The Lancet Rheumatology, 2(8), e485-e496. https://doi.org/10.1016/S2665-9913(20)30168-5

Rodsaward, P., Chottawornsak, N., Suwanchote, S., Rachayon, M., Deekajorndech, T., Wright, H. L., ... & Chiewchengchol, D. (2021). The clinical significance of antinuclear antibodies and specific autoantibodies in juvenile and adult systemic lupus erythematosus patients. Asian Pacific Journal of Allergy and Immunology, 39(4), 279-286. https://doi.org/10.12932/AP-211218-0465

Saferding, V., & Blüml, S. (2020). Innate immunity as the trigger of systemic autoimmune diseases. Journal of Autoimmunity, 110, Article 102382. https://doi.org/10.1016/j.jaut.2019.102382

Samanta, M., Nandi, M., Mondal, R., Hazra, A., Sarkar, S., Sabui, T., ... & Biswas, A. (2017). Childhood lupus nephritis: 12 years of experience from a developing country’s perspective. European Journal of Rheumatology, 4(3), 178-183. https://doi.org/10.5152/eurjrheum.2017.16117

Sanayama, Y., Ikeda, K., Saito, Y., Kagami, S. I., Yamagata, M., Furuta, S., ... & Nakajima, H. (2014). Prediction of therapeutic responses to tocilizumab in patients with rheumatoid arthritis: biomarkers identified by analysis of gene expression in peripheral blood mononuclear cells using genome‐wide DNA microarray. Arthritis & Rheumatology, 66(6), 1421-1431. https://doi.org/10.1002/art.38400

Sandhu, V., & Quan, M. (2017). SLE and serum complement: causative, concomitant or coincidental?. The Open Rheumatology Journal, 11, 113. https://doi.org/10.2174/1874312901711010113

Shen, M., Duan, C., Xie, C., Wang, H., Li, Z., Li, B., & Wang, T. (2022). Identification of key interferon-stimulated genes for indicating the condition of patients with systemic lupus erythematosus. Frontiers in Immunology, 13, Article 962393. https://doi.org/10.3389/fimmu.2022.962393

Sippl, N., Faustini, F., Rönnelid, J., Turcinov, S., Chemin, K., Gunnarsson, I., & Malmström, V. (2021). Arthritis in systemic lupus erythematosus is characterized by local IL-17A and IL-6 expression in synovial fluid. Clinical & Experimental Immunology, 205(1), 44-52. https://doi.org/10.1111/cei.13585

Soares, L., Matos, A. R., Vieira, M. M., Cruz, R., Caixas, U., Matos Sr, A. R., & Caixas Sr, U. (2022). Generalized lymphadenopathy as the first manifestation of systemic lupus erythematosus. Cureus, 14(10), Article e30089. https://doi.org/10.7759/cureus.30089

Tay, S. H., Celhar, T., & Fairhurst, A. M. (2020). Low‐density neutrophils in systemic lupus erythematosus. Arthritis & Rheumatology, 72(10), 1587-1595. https://doi.org/10.1002/art.41395

Tektonidou, M. G., Lewandowski, L. B., Hu, J., Dasgupta, A., & Ward, M. M. (2017). Survival in adults and children with systemic lupus erythematosus: a systematic review and Bayesian meta-analysis of studies from 1950 to 2016. Annals of the Rheumatic Diseases, 76(12), 2009-2016. https://doi.org/10.1136/annrheumdis-2017-211663

Tian, J., Zhang, D., Yao, X., Huang, Y., & Lu, Q. (2023). Global epidemiology of systemic lupus erythematosus: a comprehensive systematic analysis and modelling study. Annals of the Rheumatic Diseases, 82(3), 351-356. https://doi.org/10.1136/ard-2022-223035

Trindade, V. C., Carneiro-Sampaio, M., Bonfa, E., & Silva, C. A. (2021). An update on the management of childhood-onset systemic lupus erythematosus. Pediatric Drugs, 23(4), 331-347. https://doi.org/10.1007/s40272-021-00457-z

Vyasam, S., Punnen, A., Jeyaseelan, V., Prakash, J. J., & Kumar, S. (2023). Autoantibodies in Pediatric Systemic Lupus Erythematosus: Cluster Analysis and its Clinical Implications in Indian Children. Indian Journal of Rheumatology, 18(1), 35-39. https://doi.org/10.4103/injr.injr_129_21

Wallace, M. (2021). The Advisory Committee on Immunization Practices’ interim recommendation for use of Pfizer-BioNTech COVID-19 vaccine in adolescents aged 12–15 years—United States, May 2021. Morbidity and Mortality Weekly Report (MMWR), 70(20), 749-752. https://doi.org/10.15585/mmwr.mm7020e1

Wang, Y. X., Niklasch, M., Liu, T., Wang, Y., Shi, B., Yuan, W., ... & Wen, Y. M. (2020). Interferon-inducible MX2 is a host restriction factor of hepatitis B virus replication. Journal of Hepatology, 72(5), 865-876. https://doi.org/10.1016/j.jhep.2019.12.009

Webber, D., Cao, J., Dominguez, D., Gladman, D. D., Levy, D. M., Ng, L., ... & Hiraki, L. T. (2020). Association of systemic lupus erythematosus (SLE) genetic susceptibility loci with lupus nephritis in childhood-onset and adult-onset SLE. Rheumatology, 59(1), 90-98. https://doi.org/10.1093/rheumatology/kez220

Wiesauer, I., Gaumannmüller, C., Steinparzer, I., Strobl, B., & Kovarik, P. (2015). Promoter occupancy of STAT1 in interferon responses is regulated by processive transcription. Molecular and Cellular Biology, 35(4), 716-727. https://doi.org/10.1128/MCB.01097-14

Xing, C., Trivedi, J., Bitencourt, N., Burns, D. K., Reisch, J. S., & Cai, C. (2024). Myxovirus resistance protein A (MxA) expression in myositides: Sarcoplasmic expression is common in both dermatomyositis and lupus myositis. Muscle & Nerve, 69(5), 548-555. https://doi.org/10.1002/mus.28066

Yi, D. R., An, N., Liu, Z. L., Xu, F. W., Raniga, K., Li, Q. J., ... & Cen, S. (2019). Human MxB inhibits the replication of hepatitis C virus. Journal of Virology, 93(1), 10-1128. https://doi.org/10.1128/jvi.01285-18

Zhao, M., Zhou, Y., Zhu, B., Wan, M., Jiang, T., Tan, Q., ... & Lu, Q. (2016). IFI44L promoter methylation as a blood biomarker for systemic lupus erythematosus. Annals of the Rheumatic Diseases, 75(11), 1998-2006. https://doi.org/10.1136/annrheumdis-2015-208410

Zhao, X., Duan, L., Cui, D., & Xie, J. (2023). Exploration of biomarkers for systemic lupus erythematosus by machine-learning analysis. BMC Immunology, 24(1), 44. https://doi.org/10.1186/s12865-023-00581-0

Downloads

Published

2025-03-25

How to Cite

Aldhahir, S., Al-Rayahi, I., & S. Muhsin, S. (2025). Comparison of myxovirus resistance gene 2 expression among adult and juvenile SLE Iraqi patients. Journal of Current Science and Technology, 15(2), 97. https://doi.org/10.59796/jcst.V15N2.2025.97

Issue

Section

Research Article

Categories