Glutathione Levels after Glutathione Supplementation: A Systematic Review and Meta-analysis
DOI:
https://doi.org/10.59796/jcst.V15N1.2025.90Keywords:
glutathione, glutathione levels, glutathione supplementationAbstract
Glutathione is a crucial antioxidant and plays a vital role in many biochemical processes within living organisms. Abnormal levels or reductions in glutathione are linked to various health conditions and diseases. While glutathione supplementation might offer health benefits, there are ongoing concerns about its low bioavailability. This research aimed to examine the effects of glutathione supplementation on body glutathione levels through a systematic review and meta-analysis of primary studies. Randomized controlled trials (RCTs) were selected from online databases, including PubMed, Scopus, Google Scholar, and Cochrane Library. The studies compared participants who received glutathione supplementation with those in placebo or control groups by evaluating their glutathione levels. The results showed that five primary studies met the inclusion criteria. The quality assessment revealed that most studies had a low risk of bias or some concerns in various areas. However, there was a high risk of bias related to the selection of reported results, primarily due to multiple measurements or analytical methods. Three articles were included in the meta-analysis, which found no statistically significant difference in glutathione levels in erythrocytes [Standardized Mean Difference: 0.74, 95% CI (-0.44, 1.91); P = 0.22] or plasma [Standardized Mean Difference: 0.44, 95% CI (-0.21, 1.09); P = 0.19] between the intervention and placebo groups. This study concluded that glutathione supplementation does not significantly increase glutathione levels in erythrocytes or plasma. However, higher doses and longer durations of supplementation may potentially lead to increased glutathione levels in the body.
References
Allen, J., & Bradley, R. D. (2011). Effects of oral glutathione supplementation on systemic oxidative stress biomarkers in human volunteers. Journal of Alternative and Complementary Medicine, 17(9), 827-833. https://doi.org/10.1089/acm.2010.0716
Arjinpathana, N., & Asawanonda, P. (2012). Glutathione as an oral whitening agent: A randomized, double-blind, placebo-controlled study. Journal of Dermatological Treatment, 23(2), 97-102. https://doi.org/10.3109/09546631003801619
Ballatori, N., Krance, S. M., Notenboom, S., Shi, S., Tieu, K., & Hammond, C. L. (2009). Glutathione dysregulation and the etiology and progression of human diseases. Biological Chemistry, 390(3), 191–214. https://doi.org/10.1515/BC.2009.033
Baudouin-Cornu, P., Lagniel, G., Kumar, C., Huang, M. E., & Labarre, J. (2012). Glutathione degradation is a key determinant of glutathione homeostasis. Journal of Biological Chemistry, 287(7), 4552-4561. https://doi.org/10.1074%2Fjbc.M111.315705
Calabrese, C., Tosco, A., Abete, P., Carnovale, V., Basile, C., Magliocca, A., ... & Raia, V. (2015). Randomized, single blind, controlled trial of inhaled glutathione vs placebo in patients with cystic fibrosis. Journal of Cystic Fibrosis, 14(2), 203-210. https://doi.org/10.1016/j.jcf.2014.09.014
Forman, H. J., Zhang, H., & Rinna, A. (2009). Glutathione: Overview of its protective roles, measurement, and biosynthesis. Molecular Aspects of Medicine, 30(1-2), 1-12. https://doi.org/10.1016/j.mam.2008.08.006
Giustarini, D., Milzani, A., Dalle-Donne, I., & Rossi, R. (2008). Red blood cells as a physiological source of glutathione for extracellular fluids. Blood Cells, Molecules, and Diseases, 40(2), 174-179. https://doi.org/10.1016/j.bcmd.2007.09.001
Giustarini, D., Milzani, A., Dalle-Donne, I., & Rossi, R. (2023). How to Increase Cellular Glutathione. Antioxidants (Basel, Switzerland), 12(5), Article 1094. https://doi.org/10.3390/antiox12051094
Halliwell, B. (2024). Understanding mechanisms of antioxidant action in health and disease. Nature reviews. Molecular Cell Biology, 25(1), 13–33. https://doi.org/10.1038/s41580-023-00645-4
Higgins, J. P., Savović, J., Page, M. J., Elbers, R. G., & Sterne, J. A. (2019). Assessing risk of bias in a randomized trial. Cochrane Handbook for Systematic Reviews of Interventions, 205-228. https://doi.org/10.1002/9781119536604.ch8
Honda, Y., Kessoku, T., Sumida, Y., Kobayashi, T., Kato, T., Ogawa, Y., ... & Nakajima, A. (2017). Efficacy of glutathione for the treatment of nonalcoholic fatty liver disease: an open-label, single-arm, multicenter, pilot study. BMC Gastroenterology, 17(1), Article 96. https://doi.org/10.1186/s12876-017-0652-3
Irie, M., Sohda, T., Anan, A., Fukunaga, A., Takata, K., Tanaka, T., ... & Sakisaka, S. (2016). Reduced Glutathione suppresses Oxidative Stress in Nonalcoholic Fatty Liver Disease. Euroasian Journal of Hepato-gastroenterology, 6(1), 13–18. https://doi.org/10.5005/jp-journals-10018-1159
Kalamkar, S., Acharya, J., Kolappurath Madathil, A., Gajjar, V., Divate, U., Karandikar-Iyer, S., ... & Ghaskadbi, S. (2022). Randomized clinical trial of how long-term glutathione supplementation offers protection from oxidative damage and improves HbA1c in elderly type 2 diabetic patients. Antioxidants, 11(5), Article 1026. https://doi.org/10.3390/antiox11051026
Kleinman, W. A., & Richie Jr, J. P. (2000). Status of glutathione and other thiols and disulfides in human plasma. Biochemical Pharmacology, 60(1), 19-29. https://doi.org/10.1016/s0006-2952(00)00293-8
Lai, C. Y., Cheng, S. B., Lee, T. Y., Hsiao, Y. F., Liu, H. T., & Huang, Y. C. (2020). Impact of Glutathione and Vitamin B-6 in Cirrhosis Patients: A Randomized Controlled Trial and Follow-Up Study. Nutrients, 12(7), Article 1978. https://doi.org/10.3390/nu12071978
Lu, S. C. (2013). Glutathione synthesis. Biochimica et Biophysica Acta (BBA)-General Subjects, 1830(5), 3143-3153. https://doi.org/10.1016/j.bbagen.2012.09.008
Lushchak, V. I. (2012). Glutathione homeostasis and functions: potential targets for medical interventions. Journal of Amino Acids, 2012(1), Article 736837. https://doi.org/10.1155/2012/736837
Orlowski, M., & Meister, A. (1970). The γ-glutamyl cycle: a possible transport system for amino acids. Proceedings of the National Academy of Sciences, 67(3), 1248-1255. https://doi.org/10.1073/pnas.67.3.1248
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... & Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. bmj, 372. https://doi.org/10.1136/bmj.n71
Richie, J. P., Nichenametla, S., Neidig, W., Calcagnotto, A., Haley, J. S., Schell, T. D., & Muscat, J. E. (2015). Randomized controlled trial of oral glutathione supplementation on body stores of glutathione. European Journal of Nutrition, 54(2), 251-263. https://doi.org/10.1007/s00394-014-0706-z
Sharma, D. K., & Sharma, P. (2022). Augmented Glutathione Absorption from Oral Mucosa and its Effect on Skin Pigmentation: A Clinical Review. Clinical, Cosmetic and Investigational Dermatology, 15, 1853–1862. https://doi.org/10.2147/CCID.S378470
Sinha, R., Sinha, I., Calcagnotto, A., Trushin, N., Haley, J. S., Schell, T. D., & Richie, J. P., Jr (2018). Oral supplementation with liposomal glutathione elevates body stores of glutathione and markers of immune function. European Journal of Clinical Nutrition, 72(1), 105–111. https://doi.org/10.1038/ejcn.2017.132
Søndergård, S. D., Cintin, I., Kuhlman, A. B., Morville, T. H., Bergmann, M. L., Kjær, L. K., ... & Larsen, S. (2021). The effects of 3 weeks of oral glutathione supplementation on whole body insulin sensitivity in obese males with and without type 2 diabetes: a randomized trial. Applied Physiology, Nutrition, and Metabolism = Physiologie Appliquee, Nutrition et Metabolisme, 46(9), 1133–1142. https://doi.org/10.1139/apnm-2020-1099
Sterne, J. A., Savović, J., Page, M. J., Elbers, R. G., Blencowe, N. S., Boutron, I., ... & Higgins, J. P. (2019). RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ (Clinical Research ed.), 366, Article l4898. https://doi.org/10.1136/bmj.l4898
United States Food and Drug Administration. (2024). GRN no. 293 Glutathione. Retrieved April 8, 2024, from https://www.cfsanappsexternal.fda.gov/scripts/fdcc/index.cfm?set=grasnotices&id=293
Vázquez-Meza, H., Vilchis-Landeros, M. M., Vázquez-Carrada, M., Uribe-Ramírez, D., & Matuz-Mares, D. (2023). Cellular Compartmentalization, Glutathione Transport and Its Relevance in Some Pathologies. Antioxidants (Basel, Switzerland), 12(4), Article 834. https://doi.org/10.3390/antiox12040834
Visca, A., Bishop, C. T., Hilton, S., & Hudson, V. M. (2015). Oral reduced L-glutathione improves growth in pediatric cystic fibrosis patients. Journal of Pediatric Gastroenterology and Nutrition, 60(6), 802–810. https://doi.org/10.1097/MPG.0000000000000738
Wang, H. L., Zhang, J., Li, Y. P., Dong, L., & Chen, Y. Z. (2021). Potential use of glutathione as a treatment for Parkinson's disease. Experimental and Therapeutic Medicine, 21(2), Article 125. https://doi.org/10.3892/etm.2020.9557
Weschawalit, S., Thongthip, S., Phutrakool, P., & Asawanonda, P. (2017). Glutathione and its antiaging and antimelanogenic effects. Clinical, Cosmetic and Investigational Dermatology, 10, 147–153. https://doi.org/10.2147/CCID.S128339
Witschi, A., Reddy, S., Stofer, B., & Lauterburg, B. H. (1992). The systemic availability of oral glutathione. European Journal of Clinical Pharmacology, 43(6), 667–669. https://doi.org/10.1007/BF02284971
Zhang, H., Forman, H. J., & Choi, J. (2005). Gamma-glutamyl transpeptidase in glutathione biosynthesis. Methods in Enzymology, 401, 468-483. https://doi.org/10.1016/S0076-6879(05)01028-1
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2024 Journal of Current Science and Technology
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.