Effects of y-irradiation on free radicals, active components and toxicity of Turmeric rhizomes


  • Piyanuch Thongphasuk Department of Pharmacognosy, Faculty of Pharmacy, Rangsit University, Patumthani 12000, Thailand
  • Jarunee Thongphasuk Research and Development Division, Thailand Institute of Nuclear Technology (Public Organization), Nakornnayok 26120, Thailand


gamma irradiation, turmeric, volatile oil, free radicals, antioxidant activity, total phenolic content


Gamma irradiation is a method utilized to improve safety of medicinal herbs by inactivation of microorganisms.  Since irradiation may also affect active compounds and toxicity of the irradiated herbs, the objective of this research is to study the effects of gif.latex?\gamma-irradiation (10 and 25 kGy) on turmeric (Curcuma longa L.).  GC-MS, HPLC and Electron paramagnetic resonance spectroscopy (EPR) were used to determine volatile oil content, curcuminoid content and free radicals, respectively.  Total phenolic content and free radical scavenging activity were investigated by spectroscopic techniques.  Toxicity was determined by Toxi-Chromo Test.  The results showed that g-irradiation at the doses of 10 and 25 kGy significantly (P < 0.05) increased free radicals.  However, volatile oil content, curcuminoid content, total phenolic content, free radical scavenging  activity and toxicity were not significantly (P > 0.05) affected by the irradiation doses.


Ahn, H. J., Kim, J. H., Kim, J. K, Kim, D. H., Yook, H. S., & Byun M. W. (2005). Combined effects of irradiation and modified atmosphere packaging on minimally processed Chinese cabbage (Brassica rapa L.). Food Chem, 89, 589-597.

Alothman, M., Bhat, A., & Karim, A. (2009). Effects of radiation processing on phytochemicals and antioxidants in plant produce. Trends in Food Sci Tech, 20, 201-212.

Ananthakumar, A., Variyar, P. S., & Sharma, A., (2006). Estimation of aroma glycosides of nutmeg and their changes during radiation processing. J Chromatogr A, 1108, 252-257.

Arajo, C. C., & Leon, L. L. (2001). Biological activities of Curcuma longa L. Mem Inst Oswaldo Cruz, 96, 723-728.

Bhat, R., Sridhar, K. R., & Yokotani, K. T. (2007). Effect of ionizing radiation on antinutritional features of velvet bean seeds (Mucuna pruriens). Food Chem, 103, 860-866.

Bhushan, B., Bhat, R., & Sharma, A. (2003). Status of free radicals in indian monsooned coffee beans g-irradiated for disinfestation. J Agric Food Chem, 51, 4960-4964.

Boonchoong, P., Saohin, W., Kittijarukhajohn, B., Kriyasin, P., & Malithong, S. (2006). Quantitative analysis of major components in khamin chan and fathalai capsules by high performance liquid chromatography. Thai Pharm Health Sci J, 1, 45-55.

Calucci, L., Pinzino, C., Zandomeneghi, M., Capocchi, A., Ghiringhelli, S., Saviozzi, F., Tozzi, S., & Galleschi, L. (2003). Effects of gamma-irradiation on the free radical and antioxidant contents in nine aromatic herbs and spices. J Agric Food Chem, 51, 927-934.

Chatterjee, S., Desai, S. R. P., & Thomas, P. (1999). Effect of g-irradiation on the antioxidant activity of turmeric (Curcuma longa L.) extracts. Food Res Inter, 32, 487-490.

Chatterjee, S., Variyar, S. V., Achyut, S. G., Padwal-Desai, S. R., & Bongirwar, D. R. (2000). Effect of γ-irradiation on the volatile oil constituents of turmeric (Curcuma longa). Food Res Inter, 33, 103-106.

Crawford, L. M., & Ruff, E. H. (1996). A review of the safety of cold pasteurization through irradiation. Food Control, 7, 87-97.

Fan, X. (2005). Antioxidant capacity of fresh-cut vegetables exposed to ionizing radiation. J Sci Food Agric, 85, 995-1000.

Fan, X., & Sokorai, K. J. (2008). Effect of ionizing radiation on furan formation in fresh-cut fruits and vegetables. J Food Sci, 73, C79-C83.

Farkas, J. (1988). Irradiation of dry food ingredients., Florida, USA: CRC press.

Haddad, M., Herent, M. F., Tilquin, B., & Quetin-Leclercq, J. (2007). Effect of gamma and e-beam radiation on the essential oils of Thymus vulgaris thymoliferum, Eucalyptus radiata and Lavandula angustifolia. J Agric Food Chem, 55, 6082-6086.

Harrison, K., & Were, L. M. (2007). Effect of gamma irradiation on total phenolic content yield and antioxidant capacity of almond skin extracts. Food Chem, 102, 932-937.

Horvathova, J., Suhaj, M., Polovka, M., Brezova, V., & Šimko, P. (2007). The influence of gamma-irradiation on the formation of free radicals and antioxidant status of oregano (Origanum vulgare L.). Czech J Food Sci, 25, 131–143.

Huang, S. J., & Mau, J. L. (2006). Antioxidant properties of methanolic extracts from Agaricus blazei with various doses of g-irradiation. LWT-Food Sci Tech, 39, 707–716.

Khattak, K. F., Simpson, T. J., & Ihasnullah (2008). Effect of gamma irradiation on the extraction yield, total phenolic content and free radical-scavenging activity of Nigella sativa seed. Food Chem, 110, 967-972.

Kim, J. W., Lee, B. C., Lee, J. H., Nam, K. C., & Lee, S. C. (2008). Effect of electron-beam irradiation on the antioxidant activity of extracts from Citrus unshiu pomaces. Radiat Phys Chem, 77, 87-91.

Koseki, P. M., Villavicencio, A. L. C. H., Brito, M. S., Nahme, L. C., Sebastiao, K. I., & Rela, P. R. (2002). Effects of irradiation in medicinal and eatable herbs. Radiat Phys Chem, 63, 681-684.

Lampart-Szczapa, E., Korczak, J., Nogala-Kalucka, M., & Zawirska-Wojtasiak, R. (2003). Antioxidant properties of lupin seed products. Food Chem, 83, 279-285.

Lee, E. J., Park, T., Son, J. H., Jo, C., Byun, M. W., & An, B. J. (2007). Verification of biological activity of irradiated Sopoongsan, an oriental medicinal prescription, for industrial application of functional cosmetic material. Radiat Phys Chem, 76, 1890-1894.

Maija, S. A., Merja, M., Pia, M., & Sinikka, P. (1990). Methods for detection of irradiated spices. Z Lebens-Unters Forsch, 190, 99-103.

Murcia, M. A., Egea, I., Romojaro, F., Parras, P., Jime´nez, A. M., & Martı´nez-Tome´, M. (2004). Antioxidant evaluation in dessert spices compared with common food additives: influence of irradiation procedure. J Agric Food Chem, 52, 1872-1881.

Niyas, Z., Variyar, P. S., Gholap, A. S., & Sharma, A. (2003). Effect of gamma-irradiation on the lipid profile of nutmeg (Myristica fragrans Houtt.). J Agric Food Chem, 51, 6502-6504.

Pe´rez, M. B., Caldero´n, N. L., & Croci, C. A. (2007). Radiation-induced enhancement of antioxidant activity in extracts of rosemary (Rosmarinus officinalis L.). Food Chem, 104, 585-592.

Raffi, J., Yordanov, N. D., Chabane, S., Douifi, L., Gancheva, V., & Ivanova, S. (2000). Identification of irradiation treatment of aromatic herbs, spices and fruits by electron paramagnetic resonance and thermoluminescence. Spectrochim Acta A, 56, 409-416.

Salum, D. C., Araújo, M. M., Fanaro, G. B., Purgatto, E., & Villavicencio, A. L. C. H. (2009). Determination of volatiles produced during radiation processing in Laurus cinnamomum. Radiat Phys Chem, 78, 635-637.

Schindler, M., Solar, S., & Sontag, G. (2005). Phenolic compounds in tomatoes: natural variations and effect of gamma-irradiation. Eur Food Res Technol, 221, 439-445.

Schrock, M., James, R., Dindal, A., Willenberg, Z,. & Riggs, K. (2006) Environmental Technology Verification Report: Environmental Bio-Detection Products Inc., Toxi-Chromotest. Columbus, Ohio, USA: Battelle.

Song, H. P., Kim, D. H., Jo, C., Lee, C. H., Kim, K. S., & Byun, M. W. (2006). Effect of gamma irradiation on the microbiological quality and antioxidant activity of fresh vegetable juice. Food Micro, 23, 372-378.

Suhaj, M., Rácová, J., Polovka, M., & Brezová, V. (2006). Effect of γ-irradiation on antioxidant activity of black pepper (Piper nigrum L.) Food Chem, 97, 696-704.

Surh, Y. J., & Chun, K. S. (2007). Cancer chemopreventive effects of curcumin. Adv Exp Med Biol, 595,149-172.

Tabner, B. J., & Tabner, V. A. (1991). An electron spin resonance study of g-irradiated grapes. Radiat Phys Chem, 38, 523-531.

Tabner, B. J., & Tabner, V. A. (1993). An electron spin resonance study of g-irradiated citrus fruits. Radiat Phys Chem, 41, 545-552.

Thongphasuk, P., & Thongphasuk, J. (2012). Effects of irradiation on active components of medicinal plants: A review. RJAS, 2(1), 57-71.

Variyar, P., Gholap, A. S., & Thomas, P. (1997). Effect of γ-irradiation on the volatile oil constituents of fresh ginger (zingiber officinale) rhizome. Food Res Inter, 30, 41-43.

Variyar, P. S., Bandyopadhyay, C., & Thomas, P. (1998). Effect of γ -irradiation on the volatile oil constituents of some Indian spices. Food Res Inter, 31, 105-109.

Variyar, P. S., Limaye, A., & Sharma, A. (2004). Radiation-induced enhancement of antioxidant contents of soybean (Glycine max Merrill). J Agric Food Chem, 52, 3385-3388.

WHO. (1999). High-dose irradiation: wholesomeness of food irradiated with doses above 10 KGy, Technical Report Series no 890. Geneva, Switzerland, World Health Organization.

Yordanov, N. D., & Gancheva, V. A. (2000). New approach for extension of the identification period of irradiated cellulose-containing foodstuffs by EPR spectroscopy. Appl Radiat Isot, 52, 195-198.

Zareena, A. V., Variyar, P. S., Gholap, A. S., & Bongirwar, D. R. (2001). Chemical investigation of gamma-irradiated saffron (Crocus sativus L.). J Agric Food Chem, 49, 687-691.




How to Cite

Piyanuch Thongphasuk, & Jarunee Thongphasuk. (2023). Effects of y-irradiation on free radicals, active components and toxicity of Turmeric rhizomes. Journal of Current Science and Technology, 3(2), 169–177. Retrieved from https://ph04.tci-thaijo.org/index.php/JCST/article/view/637



Review Article