Laccase production by diverse phylogenetic clades of Aureobasidium pullulans

Authors

  • Joseph O. Rich Renewable Product Technology Research Unit, National Center for Agricultural Utilization Research, ARS, USDA, Peoria, IL 61604, USA
  • Pennapa Manitchotpisit Biochemistry Unit, Department of Medical Sciences, Faculty of Science, Rangsit University, Patumthani 12000, Thailand
  • Stephen W. Peterson Baterial Foodborne Pathogens and Mycology Research Unit, National Center for Agricultural Utilization Research, ARS, USDA, Peoria, IL 61604, USA
  • Timothy D. Leathers Renewable Product Technology Research Unit, National Center for Agricultural Utilization Research, ARS, USDA, Peoria, IL 61604, USA

Keywords:

Aureobasidium pullulans, laccase, p-hydroxybenzoic acid, veratric acid, ferulic acid

Abstract

Laccases (EC 1.10.3.2) have numerous potential industrial applications including the degradation of dyes and toxic materials.  Novel sources of this enzyme would be desirable to improve activity yields and substrate specificities.   In this study we tested 51 strains of Aureobasidium pullulans representing 13 diverse phylogenetic clades for laccase production.  Most strains grew on three different lignin-related substrates as sole carbon sources.  Thirteen strains that grew well on these substrates, representing five clades, were chosen for a test of laccase production in an induction assay.  Four representative strains of clade 5 produced laccase, indicating that this genetic group may be a promising source of novel activities.

References

Bourbonnais, R., & Paice, M.G. (1987). Oxidation and reduction of lignin-related aromatic compounds by Aureobasidium pullulans. Applied Microbiology and Biotechnology, 26, 164-169.

Cernakova, M., Kockova-Kratochvilova, A., Suty, L., Zemek, J., & Kuniak, L. (1980). Biochemical similarities among strains of Aureobasidium pullulans (de Bary) Arnaud. Folia Microbiologica, 25, 68-73.

Cooke, W.B. (1959). An ecological life history of Aureobasidium pullulans (de Bary) Arnaud. Mycopathologia et Mycologia Applicata, 12, 1-45.

Deshpande, M.S., Rale, V.B., & Lynch, J.M. (1992). Aureobasidium pullulans in applied microbiology: A status report. Enzyme and Microbial Technology, 14, 514-527.

Eggert, C., Temp, U., & Eriksson, K-E.L. (1996). The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: Purification and characterization of the laccase. Applied and Environmental Microbiology, 62, 1151-1158.

Eveleigh, D.E. (1961). The disfigurement of painted surfaces by fungi, with special reference to Phoma violacea. Annals of Applied Biology, 49, 403-411.

Fahraeus, G., & Reinhammar, B. (1967). Large-scale production and purification of laccase from cultures of the fungus Polyporus versicolor and some properties of laccase A. Acta Chemica Scandinavica, 21, 2367-2378.

Gianfreda, L., Xu, F., & Bollag, J.M. (1999). Laccases: A useful group of oxidoreductase enzymes. Bioremediation Journal, 3, 1-26.

Glass, N.L., & Donaldson, G. (1995). Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology, 61, 1323-1330.

Henderson, M.E.K. (1961). Isolation, identification and growth of some soil hyphomycetes and yeast-like fungi which utilize aromatic compounds related to lignin. Journal of General Microbiology, 26, 149-154.

Hibbett, D.S., Binder, M., Bischoff, J.F., et al. (2007). A higher-level phylogenetic classification of the fungi. Mycological Research, 111, 509–547.

Horvath, R.S., Brent, M.M., & Cropper, D.G. (1976). Paint deterioration as a result of the growth of Aureobasidium pullulans on wood. Applied and Environmental Microbiology, 32, 505-507.

Johannes, C., & Majcherczyk, A. (2000). Laccase activity tests and laccase inhibitors. Journal of Biotechnology, 78, 193-199.

Kantelinen, A., Hatakka, A., & Viikari, L. (1989). Production of lignin peroxidase and laccase by Phlebia radiata. Applied Microbiology and Biotechnology, 31, 234-239.

Kiiskinen, L.L., Ratto, M., & Kruus, K. (2004). Screening for novel laccase-producing microbes. Journal of Applied Microbiology, 97, 640-646.

Leathers, T.D. (1989). Purification and properties of xylanase from Aureobasidium. Journal of Industrial Microbiology, 4, 341‑348.

Leathers, T.D. (2002). Pullulan. Biopolymers, vol 6, Polysaccharides II: Polysaccharides from eukaryotes (pp. 1-35). Weinheim: Wiley-VCH.

Manitchotpisit, P., Leathers, T.D., Peterson, S.W., Kurtzman, C.P., Li, X-L., Eveleigh, D.E., Lotrakul, P., Prasongsuk, S., Dunlap, C. A.,Vermillion, K.E., & Punnapayak, H. (2009). Multilocus phylogenetic analyses, pullulan production and xylanase activity of tropical isolates of Aureobasidium pullulans. Mycological Reseach, 113, 1107-1120.

Manitchotpisit, P., Peterson, S.W., & Leathers, T. D. (2011). Phylogenetic classification of Aureobasidium pullulans strains for production of pullulan and xylanase. Proceedings of the Rangsit University Research Conference 2011, (pp. 25-30), Rangsit University, Thailand, April 5, 2011.

Manitchotpisit, P., Price, N.P.J., Leathers, T.D., & Punnapayak, H. (2011). Heavy oils produced by Aureobasidium pullulans. Biotechnology Letters, 33, 1151-1157.

McIlvaine, T.D. (1921). A buffer solution for colorimetric comparison. Journal of Biological Chemistry, 49, 183-186.

Messerschmidt, A., & Huber, R. (1990). The blue oxidases, ascorbate oxidase, laccase and ceruloplasmin. Modeling and structural relationships. European Journal of Biochemistry, 2, 341-352.

Novotny, C., Erbanova, P., Cajthaml, T., Rothschild, N., Dosoretz, C., & Sasek, V. (2000). Irpex lacteus, a white rot fungus applicable to water and soil bioremediation. Applied Microbiology and Biotechnology, 54, 850-853.

Riva, S. (2006). Laccases: blue enzymes for green chemistry. Trends in Biotechnology, 24, 219-226.

Rösch, R., Liese, W., & Berndt, H. (1969). Untersuchungen über die enzyme von bläuepilzen. Archiv für Mikrobiologie, 67, 28-50.

Schoch, C.L., Shoemaker, R.A., Seifert, K.A., Hambleton, S., Spatafora, J.W., & Crous, P.W. (2006). A multigene phylogeny of the Dothideomycetes using four nuclear loci. Mycologia, 98, 1041-1052.

Shah, V., & Nervd, F. (2002). Lignin degrading system of white rot fungi and its exploitation for dye decolorization. Canadian Journal of Microbiology, 48, 857-870.

Shoeman, M.W., & Dickinson, D. J. (1996). Aureobasidium pullulans can utilize simple aromatic compounds as a sole source of carbon in liquid culture. Letters in Applied Microbiology, 22, 129-131.

Singh, R.S., Saini, G.K., & Kennedy, J.F. (2008). Pullulan: microbial sources, production and applications. Carbohydrate Polymers, 73, 515-531.

Swofford, D.L. (2003). PAUP*: Phylogenetic analysis using parsimony, version 4.0b 10, Sunderland, MA: Sinauer Associates.

Thompson, J.D., Higgins, D.G., & Gibson, T.J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673-4680.

Thurston, C.F. (1994). The structure and function of fungal laccases. Microbiology, 140, 19-26.

Viswanath, B., Chandra, M.S., Pallavi, H., & Reddy, B.R. (2008). Screening and assessment of laccase producing fungi isolated from different environmental samples. African Journal of Biotechnology, 7, 1129-1133.

White, T.J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: M. A. Innis, D.H. Gelfand, J.J. Sninsky, & T.J. White (Eds), PCR Protocols: A guide to methods and applications. (pp. 315-322). New York: Academic Press.

Downloads

Published

2023-02-19

How to Cite

Joseph O. Rich, Pennapa Manitchotpisit, Stephen W. Peterson, & Timothy D. Leathers. (2023). Laccase production by diverse phylogenetic clades of Aureobasidium pullulans. Journal of Current Science and Technology, 1(1), 41–47. Retrieved from https://ph04.tci-thaijo.org/index.php/JCST/article/view/624

Issue

Section

Research Article