Effect of Bifidobacterium Breve on Lipid Profile and Body Fat Reduction in Patients with Metabolic Syndrome: A Randomized, Double-Blind, Placebo-Controlled, Clinical Trial

Authors

  • Dorn Numnark College of Health and Wellness, Dhurakij Pundit University, Bangkok 10210, Thailand
  • Orawan Klaisung College of Integrative Medicine, Dhurakij Pundit University, Bangkok 10210, Thailand
  • Penpitcha Panprame College of Health and Wellness, Dhurakij Pundit University, Bangkok 10210, Thailand
  • Pattra Plubcharoensook College of Integrative Medicine, Dhurakij Pundit University, Bangkok 10210, Thailand

DOI:

https://doi.org/10.59796/jcst.V15N3.2025.114

Keywords:

Bifidobacterium breve BR03, BiBfidobacterium breve B632, metabolic syndrome, probiotic

Abstract

Metabolic Syndrome (MetS) is a cluster of metabolic abnormalities, including impaired glucose tolerance and elevated triglyceride levels, that increase the risk of cardiovascular disease and diabetes. This randomized, double-blind, placebo-controlled clinical trial aimed to evaluate the efficacy of Bifidobacterium breve strains BR03 and B632 in reducing body fat and improving metabolic parameters in individuals with MetS. Ninety participants were randomly assigned to either a placebo group (n = 45; receiving 1.6 g of microcrystalline cellulose daily) or a treatment group (n = 45; receiving 1.6 g of microencapsulated B. breve BR03 and B632, 2×10⁹ CFU/day). Anthropometric and biochemical parameters, including BMI, waist circumference (WC), visceral fat ratio (VFR), blood pressure, HbA1c, fasting blood sugar (FBS), total cholesterol (TC), triglycerides (TGs), LDL-C, and HDL-C, were assessed at baseline and at 1, 2, and 3 months. At 3 months, the treatment group showed significant reductions compared to the placebo group in BMI (p = 0.001), WC (p < 0.01), VFR (p < 0.016), HbA1c (p = 0.001), FBS (p < 0.001), TC (p < 0.001), TGs (p < 0.001), and LDL-C (P < 0.001), along with a modest increase in HDL-C (p = 0.034). No significant differences were found in systolic (p = 0.19) or diastolic blood pressure (p = 0.15). These findings suggest that B. breve BR03 and B632 supplementation may offer a beneficial adjunctive strategy for improving metabolic profiles in patients with metabolic syndrome.

References

Ahmed, M., Kumari, N., Mirgani, Z., Saeed, A., Ramadan, A., Ahmed, M. H., & Almobarak, A. O. (2022). Metabolic syndrome; Definition, pathogenesis, elements, and the effects of medicinal plants on its elements. Journal of Diabetes & Metabolic Disorders, 21(1), 1011–1022. https://doi.org/10.1007/s40200-021-00965-2

Alberti, K. G. M. M., Zimmet, P., & Shaw, J. (2006). Metabolic syndrome-a new world-wide definition. A consensus statement from the International Diabetes Federation. Diabetic Medicine, 23(5), 469–480. https://doi.org/10.1111/j.1464-5491.2006.01858.x

Barreto, F. M., Simão, A. N. C., Morimoto, H. K., Lozovoy, M. A. B., Dichi, I., & da Silva Miglioranza, L. H. (2014). Beneficial effects of Lactobacillus plantarum on glycemia and homocysteine levels in postmenopausal women with metabolic syndrome. Nutrition, 30(7-8), 939-942. https://doi.org/10.1016/j.nut.2013.12.004

Bernini, L. J., Simão, A. N. C., Alfieri, D. F., Lozovoy, M. A. B., Mari, N. L., de Souza, C. H. B., ... & Costa, G. N. (2016). Beneficial effects of Bifidobacterium lactis on lipid profile and cytokines in patients with metabolic syndrome: A randomized trial. Nutrition, 32(6), 716–719. https://doi.org/10.1016/j.nut.2015.11.001

Chaiyasut, C., Sivamaruthi, B. S., Lailerd, N., Sirilun, S., Thangaleela, S., Khongtan, S., ... & Sittiprapaporn, P. (2023). Influence of Bifidobacterium breve on the glycaemic control, lipid profile and microbiome of type 2 diabetic subjects: a preliminary randomized clinical trial. Pharmaceuticals, 16(5), Article 695. https://doi.org/10.3390/ph16050695

Greany, K. A., Bonorden, M. J. L., Hamilton-Reeves, J. M., McMullen, M. H., Wangen, K. E., Phipps, W. R., ... & Kurzer, M. S. (2008). Probiotic capsules do not lower plasma lipids in young women and men. European Journal of Clinical Nutrition, 62(2), 232-237. https://doi.org/10.1038/sj.ejcn.1602719

Grundy, S. M., Cleeman, J. I., Daniels, S. R., Donato, K. A., Eckel, R. H., Franklin, B. A., ... & Costa, F. (2005). Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute scientific statement. Circulation, 112(17), 2735-2752. https://doi.org/10.1161/circulationaha.105.169404

Guo, Z., Liu, X. M., Zhang, Q. X., Shen, Z., Tian, F. W., Zhang, H., ... & Chen, W. (2011). Influence of consumption of probiotics on the plasma lipid profile: a meta-analysis of randomised controlled trials. Nutrition, Metabolism and Cardiovascular Diseases, 21(11), 844-850. https://doi.org/10.1016/j.numecd.2011.04.008

Høverstad, T., Fausa, O., Bjørneklett, A., & Bøhmer, T. (1984). Short-chain fatty acids in the normal human feces. Scandinavian Journal of Gastroenterology, 19(3), 375–381. https://doi.org/10.1080/00365521.1984.12005738

International Diabetes Federation (IDF). (2023). IDF Diabetes Atlas (11th ed.). Retrieved from https://diabetesatlas.org/

Ishibashi, N., & Yamazaki, S. (2001). Probiotics and safety. The American Journal of Clinical Nutrition, 73(2 Suppl), 465S–470S. https://doi.org/10.1093/ajcn/73.2.465s

Kaji, I., Karaki, S., & Kuwahara, A. (2014). Short-chain fatty acid receptor and its contribution to glucagon-like peptide-1 release. Digestion, 89(1), 31–36. https://doi.org/10.1159/000356211

Laue, C., Papazova, E., Pannenbeckers, A., & Schrezenmeir, J. (2023). Effect of a probiotic and a synbiotic on body fat mass, body weight and traits of metabolic syndrome in individuals with abdominal overweight: a human, double-blind, randomised, controlled clinical study. Nutrients, 15(13), Article 3039. https://doi.org/10.3390/nu15133039

Miglioranza Scavuzzi, B., Miglioranza, L. H. D. S., Henrique, F. C., Pitelli Paroschi, T., Lozovoy, M. A. B., Simão, A. N. C., & Dichi, I. (2015). The role of probiotics on each component of the metabolic syndrome and other cardiovascular risks. Expert Opinion on Therapeutic Targets, 19(8), 1127-1138. https://doi.org/10.1517/14728222.2015.1028361

Pouragha, H., Amiri, M., Saraei, M., Pouryaghoub, G., & Mehrdad, R. (2021). Body impedance analyzer and anthropometric indicators: Predictors of metabolic syndrome. Journal of Diabetes & Metabolic Disorders, 20, 1–10. https://doi.org/10.1007/s40200-021-00836-w

Saklayen, M. G. (2018). The global epidemic of the metabolic syndrome. Current Hypertension Reports, 20(2), 1-8. https://doi.org/10.1007/s11906-018-0812-z

Szulińska, M., Łoniewski, I., Van Hemert, S., Sobieska, M., & Bogdański, P. (2018). Dose-dependent effects of multispecies probiotic supplementation on the lipopolysaccharide (LPS) level and cardiometabolic profile in obese postmenopausal women: A 12-week randomized clinical trial. Nutrients, 10(6), Article 773. https://doi.org/10.3390/nu10060773

Tolhurst, G., Heffron, H., Lam, Y. S., Parker, H. E., Habib, A. M., Diakogiannaki, E., Cameron, J., Grosse, J., Reimann, F., & Gribble, F. M. (2012). Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes, 61(2), 364–371. https://doi.org/10.2337/db11-1019

Tran, V., De Silva, T. M., Sobey, C. G., Lim, K., Drummond, G. R., Vinh, A., & Jelinic, M. (2020). The vascular consequences of metabolic syndrome: rodent models, endothelial dysfunction, and current therapies. Frontiers in Pharmacology, 11, Article 148. https://doi.org/10.3389/fphar.2020.00148

Tune, J. D., Goodwill, A. G., Sassoon, D. J., & Mather, K. J. (2017). Cardiovascular consequences of metabolic syndrome. Translational Research, 183, 57-70. https://doi.org/10.1016/j.trsl.2017.01.001

Wahba, I. M., & Mak, R. H. (2007). Obesity and obesity-initiated metabolic syndrome: mechanistic links to chronic kidney disease. Clinical Journal of the American Society of Nephrology, 2(3), 550-562. https://doi.org/10.2215/CJN.04071206

Zawistowska-Rojek, A., & Tyski, S. (2018). Are Probiotic Really Safe for Humans?. Polish Journal of Microbiology, 67(3), 251–258. https://doi.org/10.21307/pjm-2018-044

Zhang, L., Chu, J., Hao, W., Zhang, J., Li, H., Yang, C., ... & Wang, H. (2021). Gut microbiota and type 2 diabetes mellitus: Association, mechanism, and translational applications. Mediators of Inflammation, 2021, Article 5110276. https://doi.org/10.1155/2021/5110276

Downloads

Published

2025-06-24

How to Cite

Numnark, D., Klaisung , O., Panprame, P., & Plubcharoensook, P. (2025). Effect of Bifidobacterium Breve on Lipid Profile and Body Fat Reduction in Patients with Metabolic Syndrome: A Randomized, Double-Blind, Placebo-Controlled, Clinical Trial. Journal of Current Science and Technology, 15(3), 114. https://doi.org/10.59796/jcst.V15N3.2025.114

Issue

Section

Research Article

Categories