An alternative to conventional treatments for bacterial infection

Authors

  • Tirasak Pasharawipas Microbiology Unit, Department of Medical Sciences, Faculty of Science, Rangsit University, Patumthani 12000, Thailand

Keywords:

bacteriophage, bacterial host, phage therapy, drug resistance bacteria

Abstract

While the concept of phage therapy to control bacterial infection and contamination was conceived almost a century ago, it has now become more important to understand the concept of phage therapy since drug resistant bacteria have become more common and the development of new antibiotics has become more difficult. Phage therapy studies have produced both positive and negative results. This article presents the fundamental knowledge of phage infection in bacterial cells and extends it to phage therapy. This article will present and discuss the major issues concerning advantages and disadvantages of phage therapy as an alternative to using antibiotic treatment of bacterial infection and contamination.

References

Abedon, S.T., & Thomas-Abedon, C. (2010). Phage therapy pharmacology. Current Pharmaceutical Biotechnology. 11, 28-47.

Ackermann, H.W., & M. S. DuBow. (1987). Viruses of prokaryotes. Boca Raton: CRC Press.

Almeida, A., Cunha, A., Gomes, N.C.M., Alves, E., Costa, L., & Faustino, M.A.F. (2009). Phage therapy and photodynamic therapy: low environmental impact approaches to inactivate microorganisms in fish farming plants. Marine Drugs. 7, 268-313.

Atterbury, R.J., Van Bergen, M.A., Ortiz, F., Lovell, M.A., Harris, J.A., De Boer, A., Wagenaar, J.A., Allen, V.M., & Barrow, P.A. (2007). Bacteriophage therapy to reduce Salmonella colonization of broiler chickens. Applied and Environmental Microbiology. 73, 4543-4549.

Brown, D.J., Baggesen, D.L., Platt, D.J., & Olsen, J.E. (1999). Phage type conversion in Salmonella enterica serotype Enteritidis caused by the introduction of a resistance plasmid of incompatibility group X (IncX). Epidemiology and Infection. 122, 19-22.

Brown, K. (2004). The history of penicillin from discovery to the drive to production. Pharm Hist (Lond). 34, 37-43.

Bruttin, A. & Brüssow, H. (2005). Human volunteers receiving Escherichia coli phage T4 orally: a safety test of phage therapy. Antimicrobial Agents and Chemotherapy. 49, 2874-2878.

Cairns, B.J., Timms, A.R., Jansen, V.A., Connerton, I.F., & Payne, R.J. (2009). Quantitative models of in vitro bacteriophage-host dynamics and their application to phage therapy. PLoS Pathogens. 5, e1000253.

Cambell, A.M. (1960). Temperate phage. Episomes modern perspective in biology (pp15-34). London, UK: Harper & Row.

Campos, J., Martínez, E., Izquierdo, Y., & Fando, R. (2010). VEJ{phi}, a novel filamentous phage of Vibrio cholerae able to transduce the cholera toxin genes. Microbiology. 156, 108-15.

Chibani-Chennoufi, S., Bruttin, A., Dillmann, M.L., & Brüssow, H. (2004a). Phage-host interaction: an ecological perspective. Journal of Bacteriology. 186, 3677-3686.

Chibani-Chennoufi, S., Sidoti, J., Bruttin, A., Kutter, E., Sarker, S., & Brüssow, H. (2004b). In vitro and in vivo bacteriolytic activities of Escherichia coli phages: implications for phage therapy. Antimicrobial Agents and Chemotherapy. 48, 2558-2569.

d'Ari, R. (1985). The SOS system. Biochimie. 67, 343-347.

Dibner, J.J., & Richards, J.D. (2005). Antibiotic growth promoters in agriculture: history and mode of action. Poultry Science. 84, 634-643.

Dimmock, N.J., Easton, A.J., & Leppard, K.N. (2001). Introduction to modern virology. 5th ed. Blackwell Science Ltd., Oxford, London, UK.

Dobrindt, U., & Reidl, J. (2000). Pathogenicity islands and phage conversion: evolutionary aspects of bacterial pathogenesis. International Journal of Medical Microbiology. 290, 519-527.

Dublanchet, A., & Fruciano, E. (2008). A short history of phage therapy. Médecine et Maladies Infectieuses. 38: 415-420.

Duran, G.M., & Marshall, D.L. (2005). Ready-to-eat shrimp as an international vehicle of antibiotic-resistant bacteria. Journal of Food Protection. 68, 2395-2401.

Endo, Y., Yamada, T., Matsunaga, K., Hayakawas, Y., Kaidoh, T., & Takeuchi, S. (2003). Phage conversion of exfoliative toxin A in Staphylococcus aureus isolated from cows and mastitis. Veterinary Microbiology. 96, 81-90.

Furuse, K. (1987). Distribution of coliphages in general environment: general consideration, Phage ecology. (pp. 87-124). New York, USA: John Wiley & Sons.

Górski, A., Miedzybrodzki, R., Borysowski, J., Weber-Dabrowska, B., Lobocka, M., Fortuna, W., Letkiewicz, S., Zimecki, M., & Filby, G. (2009). Bacteriophage therapy for the treatment of infections. Current Opinion in Investigational Drugs. 10, 766-774.

Hassan, F., Kamruzzaman, M., Mekalanos, J.J., & Faruque, S.M. (2010). Satellite phage TLCφ enables toxigenic conversion by CTX phage through dif site alteration. Nature. 467, 982-985.

Ho, K. (2001). Bacteriophage therapy for bacterial infections. Rekindling a memory from the pre-antibiotics era. Perspective in Biology and Medicine. 44, 1-16.

Kawakami, M., & Landman, O.E. (1968). Nature of the carrier state of bacteriophage SP-10 in Bacillus subtilis. Journal Bacteriology. 95, 1804-1812.

Khemayan, K., Pasharawipas, T., Puiprom, O., Sriurairatana, S., Suthienkul O., & Flegel, T.W. (2006). Unstable lysogenic and pseudolysogen in Vibrio harveyi siphovirus-like phage. Applied and Environmental Microbiology. 72, 1355-1363.

Kilic, A.O., Pavlova, S.I., Alpay, S., Kilic, S.S., & Tao, L. (2001). Comparative study of vaginal lactobacillus phages isolated from women in the United States and Turkey: prevalence, morphology, host range and DNA homology. Clinical and Diagnostic Laboratory Immunology. 8, 31-39.

Kropinski, A.M. (2006). Phage Therapy - Everything Old is New Again. The Canadian Journal of Infectious Diseases & Medical Microbiology. 17, 297-306.

Kumari, S., Harjai, K., & Chhibber, S. (2009). Efficacy of bacteriophage treatment in murine burn wound infection induced by klebsiella pneumoniae. Journal of Microbiology and Biotechnology. 19, 622-628.

Leverentz, B., Conway, W.S., Alavidze, Z., Janisiewiez, W.J., Fuchs, Y., Camp, M.J., Chighladze, E., & Sulakvelidze, A. (2001). Examination of bacteriphages as a biocontrol method for Salmonella on fresh cut fruit: a model study. Journal of Food Protection. 64, 1116-1121.

Lu, Z., Breidt, F., Plengvidhya, V., & Fleming, H.P. (2003). Bacteriophage ecology in commercial sauerkraut fermentations. Applied and Environmental Microbiology. 69, 3192-3202.

McVay, C.S., Velásquez, M., & Fralick, J.A. (2007). Phage therapy of Pseudomonas aeruginosa infection in a mouse burn wound model. Antimicrobial Agents and Chemotherapy. 51, 1934-1938.

Merril, C.R., Scholl, D., & Adhya, S.L. (2003). The prospect for bacteriophage therapy in Western medicine. Nature Review. Drug Discovery. 2, 489-497.

Nagy, E. (1974). A highly specific phage attacking Bacillus anthracis strain Sterne. Acta Microbiologica Academiae Scientiarum Hungaricae. 21, 257-63.

Oppenheim, A.B., Kobiler, O., Stavans, J., Court, D.L., & Adhya, S. (2005). Switches in bacteriophage lambda development. Annual Review of Genetics. 39, 409-429.

Pasharawipas, T., Thaikua, S., Sriurairatana, S., Ruangpan, L. Direkbusarakum, S., Manopvisetcharean J., & Flegel, T.W. (2005). Partial characterization of a novel bacteriophage of Vibrio harveyi isolated from shrimp culture ponds in Thailand. Virus Research. 114, 63-69.

Pasharawipas, T., Wetchakit, N., & Sriurairatana, S. (2008). The cycle for a Siphoviridae-like phage (VHS1) of Vibrio harveyi is dependent on the physiological state of the host. Virus Research. 135, 332-335

Pasharawipas, T., Manopvisetcharean, J., & Flegel, T.W. (2011). Phage treatment of Vibrio harveyi: a general concept of protection against bacterial infection. Research Journal of Microbiology. 6, 560-567.

Rakhuba, D.V., Kolomiets, E.I., Dey, E.S., & Novik, G.I. (2010). Bacteriophage receptors, mechanisms of phage adsorption and penetration into host cell. Polish Journal of Microbiology. 59, 145-155.

Santos, T.M., Gilbert, R.O., Caixeta, L.S., Machado, V.S., Teixeira, L.M., & Bicalho, R.C. (2010). Susceptibility of Escherichia coli isolated from uteri of postpartum dairy cows to antibiotic and environmental bacteriophages. Part II: In vitro antimicrobial activity evaluation of a bacteriophage cocktail and several antibiotics. Journal of Dairy Science. 93, 105-114.

Scholl, D., Rogers, S., Adhya, S., & Merril, C.R. (2001). Bacteriophage K1-5 encodes two different tail fiber proteins, allowing it to infect and replicate on both K1 and K5 strains of Escherichia coli. Journal Virology. 75, 2509-2515.

Sidahmed, A.M., & Wilkie, B.N. (2007). Control of cytokine gene expression using small RNA interference: blockade of interleukin-10 and interferon-gamma gene expression in pig cells. Veterinary Immunology and Immunopathology. 117, 86-94.

Skurnik, M., & Strauch, E. (2006). Phage therapy: facts and fiction. International Journal of Medical Microbiology. 296, 5-14.

Soothill, J.S. (1992). Treatment of experimental infections of mice with bacteriophages. Journal of Medical Microbiology. 37, 258-261.

Stahl, F.W. (1998). Recombination in phage lambda: one geneticist’s historical perspective. Gene. 223, 95-102.

Sulakvelidze, A., Alavidze, Z., & Morris, J.G. Jr. (2001). Bacteriophage therapy. Antimicrobial Agents and Chemotherapy. 45, 649-659.

Thiel, K. (2004). Old dogma, new tricks—21st Century phage therapy. Nature Biotechnology 22, 31-36.

Wall, S.K., Zhang, J., Rostagno, M.H., & Ebner, P.D. (2010). Phage therapy to reduce preprocessing Salmonella infections in market-weight swine. Applied and Environmental Microbiology. 76, 48-53.

Wang, J., Hu, B. Xu, M., Yan, Q., Liu, S., Zhu, X., Sun, Z., Reed, E., Ding, L., Gong, J., Li, Q.Q., & Hu, J. (2006). Use of bacteriophage in the treatment of experimental animal bacteremia from imipenem-resistant Pseudomonas aeruginosa. International Journal of Molecular Medicine. 17, 309-317.

Wolf, S.E., & Woodside, K.J. (2005). Transgenic and gene knock-out techniques and burn research. Journal of Surgical Research. 123, 328-39.

Downloads

Published

2023-02-19

How to Cite

Pasharawipas, T. . (2023). An alternative to conventional treatments for bacterial infection. Journal of Current Science and Technology, 1(2), 187–193. Retrieved from https://ph04.tci-thaijo.org/index.php/JCST/article/view/616

Issue

Section

Review Article