Identification of Indigenous Bacterial Strains from Thai Agricultural Fields for Potential Bioremediation of Carbofuran

Authors

  • Acharawan Thongmee Microbiology Unit, Faculty of Science, Rangsit University, Pathum Thani, 12000 Thailand
  • Patamaporn Sukplang Microbiology Unit, Faculty of Science, Rangsit University, Pathum Thani, 12000 Thailand

DOI:

https://doi.org/10.59796/jcst.V14N3.2024.74

Keywords:

carbofuran, bioremediation, biodegradation, soil bacteria, indigenous bacteria

Abstract

This study explored the bioremediation potential of indigenous soil bacteria for carbofuran-contaminated agricultural areas. Twenty soil samples from regions with a history of pesticide use in Pathum Thani and Nakhon Pathom provinces, Thailand, were collected. Five bacterial strains capable of degrading carbofuran were isolated and subjected to cell morphology and biochemical analyses. Phylogenetic analysis of the 16S rRNA gene sequences identified these strains as related to Pseudomonas and Stenotrophomonas species. High-Performance Liquid Chromatography (HPLC) analysis confirmed the complete degradation of carbofuran within 3 days, reducing its concentration from 0.05 mg/mL to below detectable limits. These bacteria could use carbofuran as their sole carbon source, demonstrating their potential for bioremediation of contaminated soils. Given their resilience and ability to thrive in natural environmental conditions, these indigenous strains are well-suited for in-situ degradation of pollutants. The findings indicate that these isolated soil bacteria present a promising method for reducing the environmental risks associated with carbofuran contamination.

References

Alori, E. T., Gabasawa, A. I., Elenwo, C. E., & Agbeyegbe, O. O. (2022). Bioremediation techniques as affected by limiting factors in soil environment. Frontiers Soil Sciences, 2, Article 937186. https://doi.org/10.3389/fsoil.2022.937186

Ariffin, F., & Rahman, S. A. (2020). Biodegradation of Carbofuran; A Review. Journal of Environmental Microbiology and Toxicology, 8(1), 50–57. https://doi.org/10.54987/jemat.v8i1.523

Bano, N., & Musarrat, J. (2004). Characterization of a novel carbofuran degrading Pseudomonas sp. with collateral biocontrol and plant growth promoting potential. FEMS microbiology letters, 231(1), 13–17. https://doi.org/10.1016/S0378-1097(03)00894-2

Desaint, S., Hartmann, A., Parekh, N. R., & Fournier, J. (2000). Genetic diversity of carbofuran-degrading soil bacteria. FEMS Microbiology Ecology 34(2), 173–180. https://doi.org/10.1111/j.1574-6941.2000.tb00767.x

Duc, H. D. (2022). Enhancement of carbofuran degradation by immobilized Bacillus sp. strain DT1. Environmental Engineering Research, 27(4), Article 210158. http://dx.doi.org/10.4491/eer.2021.158

Farahani, G. H. N., Zakaria, Z., Kuntom, A., Omar, D., & Ismail, B. S. (2007). Adsorption and desorption of carbofuran in Malaysian soils. Advances in Environmental Biology, 1(1), 20-26. https://link.gale.com/apps/doc/A215720204/AONE?u=anon~a3fd79d1&sid=googleScholar&xid=4d602cdf

Felsenstein, J. (1985). Confidence Limits on Phylogenies: An Approach Using the Bootstrap. Evolution, 39(4), 783–791. https://doi.org/10.2307/2408678

Hall, T. (2001). BioEdit program. Department of Microbiology, North Carolina State University. NC, U.S.A.

Hinhumpatch, P., & Wattanachaiyingcharoen, W. (2023). Species diversity of fireflies in the carbamate contaminated areas in the lower Northern region, Thailand. Asia-Pacific Journal of Science and Technology, 28(03), Article APST–28. https://doi.org/10.14456/apst.2023.36

Karpouzas, D. G., Morgan, J. A., & Walker, A. (2000). Isolation and characterization of 23 carbofuran-degrading bacteria from soils from distant geographical areas. Letters in applied microbiology, 31(5), 353–358. https://doi.org/10.1046/j.1472-765x.2000.00823.x

Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111-120. https://doi.org/10.1007/BF01731581

Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular biology and evolution, 33(7), 1870–1874. https://doi.org/10.1093/molbev/msw054

Laohaudomchok, W., Nankongnab, N., Siriruttanapruk, S., Klaimala, P., Lianchamroon, W., Ousap, P., Jatiket, M., Kajitvichyanukul, P., Kitana, N., Siriwong, W., Hemachudhah, T., Satayavivad, J., Robson, M., Jaacks, L., Barr, D. B., Kongtip, P., & Woskie, S. (2021). Pesticide use in Thailand: Current situation, health risks, and gaps in research and policy. Human and ecological risk assessment: HERA, 27(5), 1147–1169. https://doi.org/10.1080/10807039.2020.1808777

MacFaddin, J. F. (2000). Biochemical test for identification of medical bacteria. 2nd ed (pp. 64-67). Baltimore, USA: Waverly Press, Inc.

Ministry of Agriculture and Cooperatives. (2020). Summary of Imported Pesticides into Thailand [in Thai]. Office of Agricultural Economics, Bangkok. Retrieved March 25, 2020 From http://www.oae.go.th/view/1/%E0%B8%9B%E0%B8%B1%E0%B8%88%E0%B8%88%E0%B8%B1%E0%B8%A2%E0%B8%81%E0%B8%B2%E0%B8%A3%E0%B8%9C%E0%B8%A5%E0%B8%B4%E0%B8%95/TH-TH#.

Mishra, S., Zhang, W., Lin, Z., Pang, S., Huang, Y., Bhatt, P., & Chen, S. (2020). Carbofuran toxicity and its microbial degradation in contaminated environments. Chemosphere, 259, Article 127419. https://doi.org/10.1016/j.chemosphere.2020.127419

Onunga, D. O., Kowino, I. O., Ngigi, A. N., Osogo, A., Orata, F., Getenga, Z. M., & Were, H. (2015). Biodegradation of carbofuran in soils within Nzoia River Basin, Kenya. Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes, 50(6), 387–397. https://doi.org/10.1080/03601234.2015.1011965

Parekh, N. R., Hartmann, A., Charnay, M., & Fournier, J. (1995). Diversity of carbofuran-degrading soil bacteria and detection of plasmid-encoded sequences homologous to the mcd gene. FEMS Microbiology Ecology, 17(3), 149–160. https://doi.org/10.1111/j.1574-6941.1995.tb00138.x

Park, H., Seo, S. I., Lim, J. H., Song, J., Seo, J. H., & Kim, P. I. (2022). Screening of Carbofuran-Degrading Bacteria Chryseobacterium sp. BSC2-3 and Unveiling the Change in Metabolome during Carbofuran Degradation. Metabolites, 12(3), Article 219. https://doi.org/10.3390/metabo12030219

Peng, X., Zhang, J. S., Li, Y. Y., Li, W., Xu, G. M., & Yan, Y. C. (2008). Biodegradation of insecticide carbofuran by Paracoccus sp. YM3. Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes, 43(7), 588–594. https://doi.org/10.1080/03601230802234492

Rajmohan, K. S., Chandrasekaran, R., & Varjani, S. (2020). A Review on Occurrence of Pesticides in Environment and Current Technologies for Their Remediation and Management. Indian journal of microbiology, 60(2), 125–138. https://doi.org/10.1007/s12088-019-00841-x

Sawaengwong, T., Sunthornthummas,S., Surachat, K.,Atithep, T., Rangsiruji, A.,Sarawaneeyaruk, S., & Pringsulaka, O. (2023). Isolation and Characterization of Lytic Bacteriophages against Aeromonas dhakensis Isolated from Water in Thailand. Journal of Current Science and Technology, 13(3), 551-563. https://doi.org/10.59796/jcst.V13N3.2023.932

Sarapirom, P., Wiriyaampaiwong, P., Rueangsan, K., Plangklang, P., & Teerakun, M. (2022). The combination technique of bioaugmentation and phytoremediation on the degradation of paraquat in contaminated soil. Asia-Pacific Journal of Science and Technology, 27(03), Article APST–27. https://doi.org/10.14456/apst.2022.53Slaoui, M.K., Ouhssine, M., Berny, E.H., & Elyachioui, M. (2007). Biodegradation of the carbofuran by a fungus isolated from treated soil. African Journal of Biotechnology, 6, 419-423. https://doi.org/10.5897/AJB2007.000-2023

Sukplang, P., Thongmee, A., & Vela, G. R. (1999). Degradation of Linseed Oil Vapors by Soil Bacteria in Trickling Biofilters. Bioremediation Journal, 3(3), 189–200. https://doi.org/10.1080/10889869991219307

Suma, Y., Eaktasang, N., Pasukphun, N., & Tingsa, T. (2022). Health risks associated with pesticide exposure and pesticides handling practices among farmers in Thailand. Journal of Current Science and Technology, 12(1), 128-140.

Thongmee, A. & Sukplang, P. (2015). Synergism between natural product extracts and antibiotics against Methicillin-resistant Staphylococcus aureus (MRSA). Rangsit Journal of Arts and Sciences, 5(1), 19–25.

Umar Mustapha, M., Halimoon, N., Wan Johari, W. L., & Abd Shukor, M. Y. (2020). Enhanced Carbofuran Degradation Using Immobilized and Free Cells of Enterobacter sp. Isolated from Soil. Molecules (Basel, Switzerland), 25(12), Article 2771. https://doi.org/10.3390/molecules25122771

Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of bacteriology, 173(2), 697–703. https://doi.org/10.1128/jb.173.2.697-703.1991

Yan, Q. X., Hong, Q., Han, P., Dong, X. J., Shen, Y. J., & Li, S. P. (2007). Isolation and characterization of a carbofuran-degrading strain Novosphingobium sp. FND-3. FEMS microbiology letters, 271(2), 207–213. https://doi.org/10.1111/j.1574-6968.2007.00718.x

Downloads

Published

2024-09-01

How to Cite

Thongmee, A., & Sukplang, P. (2024). Identification of Indigenous Bacterial Strains from Thai Agricultural Fields for Potential Bioremediation of Carbofuran. Journal of Current Science and Technology, 14(3), Article 74. https://doi.org/10.59796/jcst.V14N3.2024.74

Issue

Section

Research Article

Categories