Growing carbon nanotubes vertically and horizontally to the substrate: a review

Authors

  • Marguerite Ellis Department of Materials Science and Engineering, University of Arizona, Tucson, Arizona 85721, U.S.A.
  • Binh Duong NanoScience Technology Center, University of Central Florida, Florida 32826, U.S.A.
  • Supapan Seraphin Department of Materials Science and Engineering, University of Arizona, Tucson, Arizona 85721, U.S.A.

Keywords:

carbon nanotubes, carbon nanofibers, double-walled carbon nanotubes, chemical vapor deposition of carbon nanotubes, Raman spectroscopy of carbon nanotubes

Abstract

This review article provides information on processing conditions of chemical vapor depositions that are significant to the growth of carbon nanotubes (CNTs) either vertically or horizontally along the substrate.  Carbon nanotubes are generated in forms of single-walled, double-walled, multi-walled cylindrical tubes, and stacked-cone fibers.  Novel composites of vertically aligned CNTs and graphitic layer are also presented.  Key processing parameters include type of catalyst systems, underlayer, gaseous hydrocarbon sources, and gas flow rate.  Growth mechanisms of various CNT forms are discussed.  The review includes Raman spectroscopy analysis to determine electrical and structural properties of CNTs.

References

An, L., Owens, J.M., McNeil, L.E., & Liu, J. (2002) Synthesis of nearly uniform single-walled carbon nanotubes using identical metal-containing molecular nanoclusters as catalysts, J. Am. Chem. Soc. 124, 13688-13689.

Bachilo, S. M., Balzano, L., Herrera, J. E., Pompeo, F., Resasco, D. E., & Weisman, R. B. (2003) Narrow (n,m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst, J. Am. Chem. Soc., 125, 11186-11187.

Baker, R. T. K., & Waite, R. J. (1975) Formation of carbonaceous deposits from the platinum-iron catalyzed decomposition of acetylene, J. Catalysis, 37, 101-105.

Baker, R.T.K. (1989) Catalytic growth of carbon filaments. Carbon, 27, 315-323.

Belin, T., & Epron, F. (2005) Characterization methods of carbon nanotubes: a review, Mater. Sci. Eng. B, 119, 105-118.

Biris, A.R., Lupu, D., Dervishi, E., Li, Z., Saini, V., Saini, D., et al. (2008) Hydrogen storage in carbon-based nanostructured materials. Particulate Science and Technology: An International Journal, 26, 297-305.

Bhaviripudi, S., Mile, E., Steiner, S. A., Zare, A. T. Dresselhaus, M. S., Belcher, & A. M., Kong, J. (2007) CVD synthesis of singe-walled carbon nanotubes from gold nanoparticle catalysts, J. Am. Chem. Soc., 129, 1516-1517.

Chen, Y., Patel, S., Ye, Y., Shaw, D.T., & Guo, L. (1998) Field emission from aligned high-density graphitic nanofibers. Appl. Phys. Lett., 73, 2119-2121.

Cheng, H. M., Li, F., Su, G., Pan, H. Y., He, L. L., Sun, X., & Dresselhaus, M. S. (1998) Large-Scale and Low-Cost Synthesis of Single-Walled Carbon Nanotubes by the Catalytic Pyrolysis of Hydrocarbons. Appl. Phys. Lett., 72, 3282–3284.

Choi, H. C., Kim, W., Wang, D. W., & Dai, H. J. (2002) Delivery of catalytic metal species onto surfaces with dendrimer carriers for the synthesis of carbon nanotubes with narrow diameter distribution. J. Phys. Chem. B, 106, 12361-12365.

Costa, S., Borowiak-Palen, E., Kruszynska, M., Bachmetiuk, A., & Kalenczuk, R. J. (2008) Characterization of carbon nanotubes by Raman spectroscopy, Mater. Sci. Poland, 26, 433-441.

Delzeit, L., Nguyen, C.V., Chen, B., Stevens, R., Cassell, A., Han, J., et al. (2002) Multiwalled Carbon Nanotubes by Chemical Vapor Deposition Using Multilayered Metal Catalysts. J. Phys. Chem. B, 106, 5629-5635.

Ding, L., Tselev, A., Wang, J. Y., Yuan, D. N., Chu, H. B., McNicholas, T. P., Li, Y., & Liu, J. (2009) Selective growth of well aligned semiconducting single-walled carbon nanotubes. Nano Lett., 9, 800-805.

Ding, L., Yuan, D. N., & Liu, J. (2008) Growth of high-density parallel arrays of long single-walled carbon nanotubes on quartz substrates. J. Am. Chem. Soc., 130, 5428-5429.

Duong, B., Seraphin, S., Wang, L., Peng, Y., & Xin, H. (2011) Production of predominantly semiconducting double-walled carbon nanotubes, Carbon, 49, 3512-3521.

Duong, B., Gangopadhyay, P., Seraphin, S., & Thomas, J. (2012) Multiwall carbon nanotubes grown by thermocatalytic carbonization of polyacrylonitrile, Carbon, in press.

Dresselhaus, M. S., Dresselhaus, G., & Eklund, P. C. (1996). Science of Fullerenes and Carbon Nanotubes, San Diego, USA: Academic.

Dresselhaus, M. S., Dresselhaus, G., & Saito, R., Jorio, A. (2005) Raman spectroscopy of carbon nanotubes, Phys. Reports, 409, 47-99.

Dresselhaus, M. S., Jorio, A., Hofmann, M., Dresselhaus, G., & Saito, R. (2010) Perspectives on carbon nanotubes and graphene Raman spectroscopy, Nano Lett., 10, 751-758.

Du, F., Qu, L., Xia, Z., Feng, L., & Dai, L. (2011) Membranes of Vertically-aligned Superlong Carbon Nanotubes, Langmuir, 27, 8437-8443.

Ellis, M., (2012), Ph.D., Investigation of multiwalled carbon nanofiber-graphite layer composites and analysis of natural chalks, University of Arizona.

Ellis, M., Jutarosaga, T., Smith, S.M., Wei, Y., & Seraphin, S. (2012) Composite films of vertically aligned carbon nanofibers with graphite layer grown by low temperature, low pressure chemical vapor deposition, Manuscript in preparation.

Endo, M., Takeuchi, K., Igarashi, S., Kobori, K., Shiraishi, M., & Kroto, H.W. (1993). The production and structure of pyrolytic carbon nanotubes (PCNTs). J. Phys. and Chem. of Solids, 54, 1841-1848.

Fan, S., Chapline, M., Frankline, N., Tombler, T., Cassel, A. M., & Dai, H. (1999) Self-oriented regular arrays of carbon nanotubes and their field emission devices, Science, 283, 512

Franklin, N. R., & Dai, H. (2000) An enhanced CVD approach to extensive nanotube networks with directionality, Adv. Mater., 12, 890-894.

Gong, K., Chakrabarti, S., & Dai, L. (2008) Electrochemistry at carbon nanotube electrodes: Is the nanotube tip more active than the sidewall? Angew. Chem., Int. Ed., 47, 5446-5450.

Guo, T., Nikolaev, P., Thess, A., Colbert, D.T., & Smalley, R.E. (1995) Catalytic growth of single-walled nanotubes by laser vaporization. Chem. Phys. Lett., 243, 49-54.

Hata, K., Futaba, D.N., Mizuno, K., Namai, T., Yumura, M., & Iijima, S., (2004) Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes, Science, 306, 1362-1364.

Hofmann, S., Csanyi, G., Ferrari, A.C., Payne, M.C., & Robertson, J. (2005) Surface Diffusion: The Low Activation Energy Path for Nanotube Growth. Phys. Rev. Lett., 95, 036101-036104.

Honda, S., Lee, K., Aoki, K., Hirao, T., Oura, K., & Katayama, M. (2006) Low-temperature synthesis of aligned carbon nanofibers on glass substrates by inductively coupled plasma chemical vapor deposition. Japanese J. Appl. Phys., 45, 5326-5328.

Huang, J., Liu, Y., & You, T. (2010) Carbon nanofiber based electrochemical biosensors: a review. Anal. Methods, 2, 202-211.

Huang, S. M., Cai, Q., Chen, J., Qian Y., & Zhang, L. J. (2009) Metal - catalyst-free growth of single-walled carbon nanotubes on substrates. J. Am. Chem. Soc., 131, 2094-2095.

Hughes, T.V., & Chambers, C.R. (1889) Manufacture of carbon filaments, 480.

Iijima, S. (1991) Helical microtubles of graphitic carbon. Nature 354, 56-58.

Jang, J.W., Lee, C.E., Oh, C.I., & Lee, C.J. (2005) Hydrogen storage capacity of different carbon nanostructures in ambient conditions. J Appl. Phys. 98, 074316-3.

Jeong, G. H., Yamazaki, A., Suzuki, S., Yoshimura, H., Kobayashi, Y., & Homma, Y. (2005) Cobalt-filled apoferritin for suspended single-walled carbon nanotube growth with narrow diameter distribution J. Am. Chem. Soc., 127, 8238-8239.

Jiao, J., & Seraphin, S. (1998) Tailoring carbon nanoclusters to desired morphologies. J. Mater. Res., 13, 2438-2444.

Jishi, R. A., Venkataraman, L., Dresselhaus, M. S., & Dresselhaus, G. (1993) Phonon modes in carbon nanotubes, Chem. Phys. Lett., 209, 77-82.

Jorio, A., Saito, R., Hafner, J. H., Lieber, C. M., Hunter, M., McClure, T., Dresselhaus, G., & Dresselhaus, M. S. (2001) Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering, Phys. Rev. Lett., 2001, 86, 1118-1121.

José-Yacamán, M.; Miki-Yoshida, M.; Rendón, L., & Santiesteban, J. G. (1993). Catalytic growth of carbon microtubules with fullerene structure. Appl. Phys. Lett., 62, 657-659.

Jousseaume, V., Cuzzocrea, J., Bernier, N., & Renard, V.T. (2011) Few graphene layers/carbon nanotube composites grown at complementary-metal-oxide-semiconductor compatible temperature. Appl. Phys. Lett. 98, 123103-1,123103-3.

Jutarosaga, T., Seraphin, S., Smith, S. M., & Wei, Y. (2006) Effect of RF-PECVD synthesis conditions on the carbon nanotube growth, Proc. Micro. Soc. America

Kondo, D., Sato, S., & Awano, Y. (2008) Self-organization of novel carbon composite structure: graphene multi-layers combined perpendicularly with aligned carbon nanotubes. Appl. Phys. Express 1, 074003-1,074003-3.

Kong, J., Soh, H., Quate, C. F., & Dai, H. (1998) Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers, Nature, 395, 878-881.

Kroto, H.W., Heath, J.R., O'Brien, S.C., Curl, R.F., & Smalley, R.E. (1985) C 60: Buckminsterfullerene. Nature 318, 162-163.

Kumar, M., & Ando, Y. (2010) Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production, J. Nanosci. Nanotechnol., 10(6), 3739-3758.

Kurti, J., Kresse, G., & Kuzmany, H. (1998) First-principles calculations of the radial breathing mode of single-wall carbon nanotubes, Phys. Rev. B, 58, R8869-R8872.

Labunov, V.A., Shulitski, B.G., Prudnikava, A.L., Shaman, Y.P., Basaev, A.S. (2010) Composite nanostructure of vertically aligned carbon nanotube array and planar graphite layer obtained by the injection CVD method. Semiconductor Phys., Quantum Electronics and Optoelectronics, 13, 137-141.

Lee, C.J., Son, K.H., Park, J., Yoo, J.E., Huh, Y., & Lee, J.Y. (2001) Low temperature growth of vertically aligned carbon nanotubes by thermal chemical vapor deposition. Chem. Phys. Lett., 338, 113-117.

Li, Q., Yan, H., Zhang, J., & Liu, Z. (2004) Effect of hydrocarbons precursors on the formation of carbon nanotubes in chemical vapor deposition, Carbon, 42, 829-835.

Li, W. Z., Xie, S., Qian, L. X., Chang, B. H., Zou, B. S., Zhou, W. Y., Zhao, R. A., & Wang G. (1996) Large-scale synthesis of aligned carbon nanotubes, Science, 274, 1701.

Li, Y., Cui, R., Ding, L., Liu, Y., Zhou, W., Zhang, Y., Jin, Z., Peng, F., & Liu J. (2010) How catalysts affect the growth of single-walled carbon nanotubes on substrates, Adv. Mater., 22, 1508-1515.

Linares, A., Canalda, J.C., Cagiao, M.E., Garcia-Gutierrez, M.C., Nogales, A., Martin-Gullon, I., et al. (2008) Broad-band electrical conductivity of high density polyethylene nanocomposites with carbon nanoadditives: multiwall carbon nanotubes and carbon nanofibers. Macromolecules, 41, 7090-7097.

Liu, Y., Pan, C., & Wang, J. (2004) Raman spectra of carbon nanotubes and nanofibers prepared by ethanol flames. J. Mater. Sci., 39, 1091-1094.

Liu, B., Ren. W., Gao, L. B., Li, S. S., Pei, S. F., Liu, C., Jiang, C. B., & Cheng, H. M. (2009) Metal-catalyst-free growth of single-walled carbon nanotubes. J. Am. Chem. Soc., 131, 2082-2083.

Lu, C.G., & Liu, J. (2006) Controlling the diameter of carbon nanotubes in chemical vapor deposition method by carbon feeding. J. Phys. Chem. B, 110, 20254-20257.

Ma, X., Wang, E., Zhou, W., Jefferson, D.A., Chen, J., Deng, S., et al. (1999) Polymerized carbon nanobells and their field-emission properties. Appl. Phys. Lett., 75, 3105-3107.

Mahan, G.D. (2002) Oscillations of a thin hollow cylinder: carbon nanotubes, Phys. Rev. B, 65, 235402.1-7.

Malesevic, A., Chen, H., Hauffman, T., Vanhulsel, A., Terryn, H., & Van Haesendonck, C. (2007) Study of the catalyst evolution during annealing preceding the growth of carbon nanotubes by microwave plasma-enhanced chemical vapor depostion. Nanotechnology, 18, 455602-455610.

Melechko, A.V., Merkulov, V.I., McKnight, T.E., Guillorn, M.A., Klein, K.L., Lowndes, D.H., et al. (2005) Vertically aligned carbon nanofibers and related structures: controlled synthesis and directed assembly. J. Appl. Phys., 97, 041301-39.

Miyauchi, Y. H., Chiashi, S. H., Murakami, Y., Hayashida, Y., & Maruyama, S. (2004) Fluorescence spectroscopy of single-walled carbon nanotubes synthesized from alcohol, Chem. Phys. Lett., 2004, 387, 198-203.

Nessim, G.D. (2010) Properties, synthesis, and growth mechanisms of carbon nanotubes with special focus on thermal chemical vapor deposition. Nanoscale, 2, 1306-1323.

Nikolaev, P., Bronikowski, M. J., Bradley, R. K., Rohmund, F., Colbert, D. T., Smith, K. A., & Smalley, R. E. (1999) Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide, Chem. Phys. Lett., 313, 91-97.

Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., et al. (2004) Electric field effect in atomically thin carbon films. Science, 306, 666-669.

Park, K.H., Yim, J.H., Lee, S., & Koh, K.H. (2005) High current field emission from carbon nanofiber films grown using electroplated Ni catalyst. J. Vacuum Sci. & Tech. B: Microelectronics and Nanometer Structures, 23, 776-780.

Poa, C.H., Henley, S.J., Chen, G.Y., Adikaari, A.A., Giusca, C.E., & Silva, S.R. (2005) Growth and field emission properties of vertically aligned carbon nanofibers. J. Appl. Phys., 97, 114308-1,114308-6.

Rao, M., Richter, E., Bandow, S., Chase, B., Eklund, P. C., Williams, K. A., Fang, S.,

Subbaswamy, K. R., Menon, M., Thess, A., Smalley, R. E., Dresselhaus, G., & Dresselhaus, M.S. (1997) Diameter-selective Raman scattering from vibrational modes in carbon nanotubes, Science, 275, 187-191.

Reynolds, C., Doung, B., & Seraphin, S. (2010) Effects of hydrogen flow rate on carbon nanotube growth, J. Undergraduate Research in Physics, http://www.jurp.org/2010/ms115_082710.pdf

Sanchez-Portal, D., Artacho, E., Soler, J. M., Rubio, A., & Ordejon, P. (1999) Ab initio structural, elastic, and vibrational properties of carbon nanotubes, Phys. Rev. B, 59, 12678-12688.

Satiskumar, B. C., Govindaraj, A., & Rao, C.N.R. (1999). Bundles of aligned carbon nanotubes obtained by the pyrolysis of ferrocene–hydrocarbon mixtures: role of the metal nanoparticles produced in situ. Chem. Phys. Lett., 307, 158-162.

Sen, R., Govindaraj, A., & Rao, C. N. R. (1997) Carbon nanotubes by the metallocene route, Chem. Phys. Lett., 267, 276-280.

Sivakumar, V.M., Abdul Rahman Mohamed, Ahmad Zuhairi Abdullah, & Siang-Piao, Chai. (2010) Role of reaction and factors of carbon nanotubes growth in chemical vapour decomposition process using methane—a highlight. J. Nanomater., doi:10.1155/2010/395191

Sun, X., Li, K., Wu, R., Wilhite, P., Saito, T., Gao, J., et al. (2010) The effect of catalysts and underlayer metals on the properties of PECVD-grown carbon nanostructures. Nanotechnology, 21, 045201-045206.

Sung, W.Y., Kim, W.J., Lee, H.Y., & Kim, Y.H. (2008) Field emission characteristics of carbon nanofibers grown on copper micro-tips at low temperature. Vacuum, 82, 551-555.

Sveningsson, M., Morjan, R.E., Nerushev, O., & Campbell, E.E.B. (2004) Electron field emission from multi-walled carbon nanotubes. Carbon, 42, 1165-1168.

Takagi, D., Kobayashi, Y., Hibirio, H., Suzuki, S., & Homma, Y. (2008) Mechanism of gold-catalyzed carbon material growth. Nano Lett., 8, 832-835.

Takeda, G., Pan, L., Akita, S., & Nakayama, Y. (2005) Vertically aligned carbon nanotubes grown at low temperatures for use in displays. Japanese J. Appl. Phys., 44, 5642-5645.

Valentini, L., Cantalini, C., Armentano, I., Kenny, J.M., Lozzi, L., & Santucci, S. (2004) Highly sensitive and selective sensors based on carbon nanotubes thin films for molecular detection. Diamond and Related Materials, 13, 1301-1305.

Vera-Agullo, J., Glória-Pereira, A., Varela-Rizo, H., Gonzalez, J.L., & Martin-Gullon, I. (2009) Comparative study of the dispersion and functional properties of multiwall carbon nanotubes and helical-ribbon carbon nanofibers in polyester nanocomposites. Composites Sci. Technol., 69, 1521-1532.

Wang, Q.H., Setlur, A.A., Lauerhaas, J.M., Dai, J.Y., Seelig, E.W., & Chang, R.P.H. (1998) A nanotube-based field-emission flat panel display. Appl. Phys. Lett., 72, 2912-2913.

Wang, Y., Alsmeyer, D., & McCreery, R. (1990) Raman spectroscopy of carbon materials: structural basis of observed spectra, Chem. Mater., 2, 557-563.

Wei, B.Q., Vajtai, R., Jung, Y., Ward, J., Zhang, R., Ramanath, G., & Ajayan, P.M. (2002) Organized assembly of carbon nanotubes, Nature, 416, 495-496.

Wu, L., Zhang, X., & Ju, H. (2007) Detection of NADH and ethanol based on catalytic activity of soluble carbon nanofiber with low overpotential. Anal. Chem., 79, 453-458.

Yen, J.H., Leu, I.C., Lin, C.C., & Hon, M.H. (2004) Effect of catalyst pretreatment on the growth of carbon nanotubes. Diamond and Related Materials, 13, 1237-1241.

Yuan, D. N., Ding, L., Chu, H. B., Feng, Y. Y., McNicholas, T. P., & Liu, J. (2008)

Horizontally aligned single-walled carbon nanotube on quartz from a large variety of metal catalysts, Nano Lett., 8, 2576-2579.

Zhang, D., Kandadai, M.A., Cech. J., Roth. S., & Curran, S.A. (2006) Poly(L-lactide) (PLLA)/multiwalled carbon nanotube (MWCNT) composite : characterization and ciocompatibility cvaluation. J. Phys.Chem. B, 110, 12910-12915.

Zhou, W. W., Han, Z. Y., Wang, J. Y., Zhang, Y., Jin, Z., Sun, X., Zhang, Y. W., Yan, C. H., & Li, Y. (2006) Copper catalyzing growth of single-walled carbon nanotubes on substrates. Nano Lett., 6, 2987-2990.

Zhou, W., Ding, L., & Liu, J. (2009) Role of Catalysts in the Surface Synthesis of Single-Walled Carbon Nanotubes Nano Res., 2, 593-598.

Downloads

Published

2023-02-19

How to Cite

Marguerite Ellis, Binh Duong, & Seraphin, S. . (2023). Growing carbon nanotubes vertically and horizontally to the substrate: a review. Journal of Current Science and Technology, 2(2), 161–174. Retrieved from https://ph04.tci-thaijo.org/index.php/JCST/article/view/586

Issue

Section

Review Article