In vitro kill-time test of disinfectants against Pseudomonas aeruginosa recovered from water associated with hemodialysis applications


  • Patamaporn Sukplang Microbiology Unit, Department of Medical Sciences, Faculty of Science, Rangsit University, Patumthani 12000, Thailand
  • Acharawan Thongmee Microbiology Unit, Department of Medical Sciences, Faculty of Science, Rangsit University, Patumthani 12000, Thailand


Pseudomonas aeruginosa, hemodialysis, kill-time


Bacterial contamination causes various problems in patients with kidney disease undergoing hemodialysis.  Pseudomonas aeruginosa is found as a major contaminant in dialysis apparatus, therefore, effective disinfection to prevent the buildup of this bacteria in the system is needed.  The aim of this study was to evaluate the effective concentration and required kill time of disinfectants commonly used for disinfection of dialysis apparatus against Pseudomonas aeruginosa.  Antibacterial activities of five disinfectants, sodium hypochlorite, hydrogen peroxide, formalin, Perxania 2505 (5% peracetic acid) and Benzalkonium chloride were evaluated. They were tested against P. aeruginosa isolated from contaminated dialysis apparatus. The evaluation procedures included minimal bactericidal concentration (MBC) assay and kinetics of killing assessment.  It was shown that Perxania possesses the lowest MBC required for killing P. aeruginosa (0.2 ppm) while the MBCs of sodium hypochlorite, hydrogen peroxide, formalin and Benzalkonium chloride are 200, 2, 370 and 1000 ppm, respectively.  Kinetics of killing of each disinfectant was performed at MBC values of each disinfectant to kill 106 CFU/ml inoculum of tested bacteria.  The results showed that Perxania killed 3 logs (99.9%) of P. aeruginosa in 58 minutes.  In conclusion, the in vitro kinetics of kill studies demonstrate that Perxania 2025 (PAA) rapidly kills P. aeruginosa recovered from water associated with hemodialysis system.  The speed of kill observed for PAA is faster than that for other test disinfectants under the same test conditions.


Ahmmad, B., Kusumoto, Y., Ikeda, M., Somekawa, S., & Horie, Y. (2007). Photocatalytic hydrogen production from diacids and their decomposition over mixtures of TiO2 and single walled carbon nanotubes. J. Adv. Oxid. Technol., 10(2), 415-420.

Ahmmad, B., Leonard, K., Islam, M. S., Kurawaki, J., Muruganandham, M., Ohkubo, T., & Kuroda, Y. (2013). Green synthesis of mesoporous hematite (a-Fe2O3) nanoparticles and their photocatalytic activity. Adv. Power. Tehnol., 24(1), 160-167.

Byrne, J. A., Eggins, B. R., Brown, N. M. D., McKinney, B., & Rouse, M. (1998). Immobilisation of TiO2 powder for the treatment of polluted water. Appl. Catal. B:Environ., 17, 25-36.

Fujishima, A., & Honda, K. (1972). Electrochemical photocatalysis of water a semiconductor electrode. Nature, 238, 37-38. doi:10.1038/238037a0.

Gu, J., Li, S., Wang, E., Li, Q., Sun, G., Xu, R., & Zhang, H. (2009). Single-crystalline a-Fe2O3 with hierarchical structures: controllable synthesis, formation mechanism and photocatalytic properties. J. Solid. State. Chem., 182, 1265-1272.

Hoffmann, M. R., Martin, S. T., Choi, W., & Bahnemann, D. W. (1995). Environmental applications of semiconductor photocatalysis. Chem. Rev., 95(1), 69-96.

Ishibashi, K., Fujishima, A., Watanabe, T., & Hashimoto, K. (2000). Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique. Electrochem. Commun., 2, 207-210.

Jha, A. K., & Prasad, K. (2010). Biosynthesis of metal and oxide nanoparticles using Lactobacilli from yoghurt and probiotic spore tablets. Biotechnol. J., 5(3), 285-291. doi: 10.1002/biot.200900221.

Karunakaran, C., & Senthilvelan, S. (2006). Fe2O3-photocatalysis with sunlight and UV light: Oxidation of aniline. Electrochem. Commun., 8(1), 95-101.

Khan, H. M., Anwar, M., & Ahmad, G. (1995). Effect of temperature and light on the response of an aqueous coumarin dosimeter. J. Radioanal. Nucl. Chem. Lett., 200, 521-527.

Kostedt, I. V., Byrne, H. E., & Mazyck, D. W. (2010). A high surface area magnetic photocatalyst with controlled pore size. Environ. Prog. Sustain. Energy, 29(1),10-16.

Leonard, K., Ahmmad, B., Okamura, H., & Kurawaki, J. (2011). In situ green synthesis of biocompatible ginseng capped gold nanoparticles with remarkable stability. Colloids. Surf. B Biointerfaces, 82(2), 391-396.

Li, L., Chu, Y., Liu, Y., & Dong, L. (2007). Template-free synthesis and photocatalytic properties of novel Fe2O3 hollow spheres. J. Phys. Chem., C. 111, 2123-2127.

Pal, B., & Sharon, M. (1998). Photocatalytic degradation of salicylic acid by colloidal Fe2O3 Particles. J. Chem. Technol. Biotechnol., 73(3), 269-273.

Rachel, A., Subrahmanyam, M., & Boule, P. (2002). Comparison of photocatalytic efficiencies of TiO2 in suspended and immobilised form for the photocatalytic degradation of nitrobenzenesulfonic acids. Appl. Catal. B: Environ., 37(4), 301-308.

Tang, B., Wang, G., Zhuo, L., Ge, J., & Cui, L. (2006). Facile Route to a-FeOOH and a-Fe2O3 nanorods and magnetic property of a-Fe2O3 nanorods. Inorg. Chem., 45, 5196-5200.

Valenzuela, M. A., Bosch, P., Jiménez-Becerrill, J., Quiroz, O., & Páez, A. I. (2002). Preparation, characterization and photocatalytic activity of ZnO, Fe2O3 and ZnFe2O4. J. Photochem. Photobiol., A. 148, 177-182.

Wan, L., Yan, S., Wang, X., Li, Z., & Zou, Z. (2011). Solvothermal synthesis of monodisperse iron oxides with various morphologies and their applications in removal of Cr(VI). Crys. Eng. Comm., 13, 2727-2733.

Wang, D., Song, C., Zhao, Y., & Yang, M. (2008). Synthesis and characterization of monodisperse iron oxides microspheres. J. Phys. Chem., C. 112, 12710-12715.

Xuan, S., Chen, M., Hao, L., Jiang, W., Gong, X., Hua, Y., & Chen, Z. J. (2008). Preparation and characterization of microsized FeCO3, Fe3O4 and Fe2O3 with ellipsoidal morphology. Magn. Magn. Mater., 320(3-4), 164-170.

Zhang, X., Sui, C., Gong, J., Su, Z., & Qu, L. (2007). Preparation and formation mechanism of different a-Fe2O3 morphologies from snowflake to paired microplates, dumbbell and spindle microstructures. J. Phys. Chem., C. 111, 9049-9054.

Zhao, Y. M., Li, Y. H., Ma, R. Z., Roe, M. J., McCartney, D. G., & Zhu, Y. Q. (2006). Growth and characterization of iron oxide nanorods/nanobelts prepared by a simple iron-water reaction. Small, 2(3), 422-427.

Zhou, W., He, W., Ma, J., Wang, M., Zhang, X., Yan, S., Tian, X., Sun, X., & Han, X. (2009). Biosynthesis of mesoporous organic-inorganic hybrid Fe2O3 with high photocatalytic activity. Mater. Sci. Eng., C. 29, 1893-1896.




How to Cite

Patamaporn Sukplang, & Acharawan Thongmee. (2023). In vitro kill-time test of disinfectants against Pseudomonas aeruginosa recovered from water associated with hemodialysis applications. Journal of Current Science and Technology, 4(1), 39–45. Retrieved from



Research Article