Biosynthesis of elliptical hematite microparticles and their photocatalytic performance
Keywords:
iron oxide, hydroxyl radical, green tea, green synthesisAbstract
A green synthesis method of a-Fe2O3 microparticles has been developed using the extract of green tea (camellia sinensis) leaves. The as-prepared microparticles were characterized by SEM, TEM, XRD, XPS, UV-visible spectroscopy, and N2 adsorption analysis. The crystallized microparticles were elliptical in shape with a diameter and length of 1mm and 2 mm, respectively. The photocatalytic activity of the microparticles was evaluated by the amount of hydroxyl radical formation under visible light irradiation detected by fluorescence spectroscopy. The as-prepared a-Fe2O3 showed similar photocatalytic activity as the commercial a-Fe2O3 in terms of hydroxyl radical formation. The microparticles were easy to separate from the aqueous suspension by gravity settling after water treatment. A plausible mechanism for the formation of a-Fe2O3 microparticles was suggested.
References
Ahmmad, B., Kusumoto, Y., Ikeda, M., Somekawa, S., & Horie, Y. (2007). Photocatalytic hydrogen production from diacids and their decomposition over mixtures of TiO2 and single walled carbon nanotubes. J. Adv. Oxid. Technol., 10(2), 415-420.
Ahmmad, B., Leonard, K., Islam, M. S., Kurawaki, J., Muruganandham, M., Ohkubo, T., & Kuroda, Y. (2013). Green synthesis of mesoporous hematite (a-Fe2O3) nanoparticles and their photocatalytic activity. Adv. Power. Tehnol., 24(1), 160-167.
Byrne, J. A., Eggins, B. R., Brown, N. M. D., McKinney, B., & Rouse, M. (1998). Immobilisation of TiO2 powder for the treatment of polluted water. Appl. Catal. B:Environ., 17, 25-36.
Fujishima, A., & Honda, K. (1972). Electrochemical photocatalysis of water a semiconductor electrode. Nature, 238, 37-38. doi:10.1038/238037a0.
Gu, J., Li, S., Wang, E., Li, Q., Sun, G., Xu, R., & Zhang, H. (2009). Single-crystalline a-Fe2O3 with hierarchical structures: controllable synthesis, formation mechanism and photocatalytic properties. J. Solid. State. Chem., 182, 1265-1272.
Hoffmann, M. R., Martin, S. T., Choi, W., & Bahnemann, D. W. (1995). Environmental applications of semiconductor photocatalysis. Chem. Rev., 95(1), 69-96.
Ishibashi, K., Fujishima, A., Watanabe, T., & Hashimoto, K. (2000). Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique. Electrochem. Commun., 2, 207-210.
Jha, A. K., & Prasad, K. (2010). Biosynthesis of metal and oxide nanoparticles using Lactobacilli from yoghurt and probiotic spore tablets. Biotechnol. J., 5(3), 285-291. doi: 10.1002/biot.200900221.
Karunakaran, C., & Senthilvelan, S. (2006). Fe2O3-photocatalysis with sunlight and UV light: Oxidation of aniline. Electrochem. Commun., 8(1), 95-101.
Khan, H. M., Anwar, M., & Ahmad, G. (1995). Effect of temperature and light on the response of an aqueous coumarin dosimeter. J. Radioanal. Nucl. Chem. Lett., 200, 521-527.
Kostedt, I. V., Byrne, H. E., & Mazyck, D. W. (2010). A high surface area magnetic photocatalyst with controlled pore size. Environ. Prog. Sustain. Energy, 29(1),10-16.
Leonard, K., Ahmmad, B., Okamura, H., & Kurawaki, J. (2011). In situ green synthesis of biocompatible ginseng capped gold nanoparticles with remarkable stability. Colloids. Surf. B Biointerfaces, 82(2), 391-396.
Li, L., Chu, Y., Liu, Y., & Dong, L. (2007). Template-free synthesis and photocatalytic properties of novel Fe2O3 hollow spheres. J. Phys. Chem., C. 111, 2123-2127.
Pal, B., & Sharon, M. (1998). Photocatalytic degradation of salicylic acid by colloidal Fe2O3 Particles. J. Chem. Technol. Biotechnol., 73(3), 269-273.
Rachel, A., Subrahmanyam, M., & Boule, P. (2002). Comparison of photocatalytic efficiencies of TiO2 in suspended and immobilised form for the photocatalytic degradation of nitrobenzenesulfonic acids. Appl. Catal. B: Environ., 37(4), 301-308.
Tang, B., Wang, G., Zhuo, L., Ge, J., & Cui, L. (2006). Facile Route to a-FeOOH and a-Fe2O3 nanorods and magnetic property of a-Fe2O3 nanorods. Inorg. Chem., 45, 5196-5200.
Valenzuela, M. A., Bosch, P., Jiménez-Becerrill, J., Quiroz, O., & Páez, A. I. (2002). Preparation, characterization and photocatalytic activity of ZnO, Fe2O3 and ZnFe2O4. J. Photochem. Photobiol., A. 148, 177-182.
Wan, L., Yan, S., Wang, X., Li, Z., & Zou, Z. (2011). Solvothermal synthesis of monodisperse iron oxides with various morphologies and their applications in removal of Cr(VI). Crys. Eng. Comm., 13, 2727-2733.
Wang, D., Song, C., Zhao, Y., & Yang, M. (2008). Synthesis and characterization of monodisperse iron oxides microspheres. J. Phys. Chem., C. 112, 12710-12715.
Xuan, S., Chen, M., Hao, L., Jiang, W., Gong, X., Hua, Y., & Chen, Z. J. (2008). Preparation and characterization of microsized FeCO3, Fe3O4 and Fe2O3 with ellipsoidal morphology. Magn. Magn. Mater., 320(3-4), 164-170.
Zhang, X., Sui, C., Gong, J., Su, Z., & Qu, L. (2007). Preparation and formation mechanism of different a-Fe2O3 morphologies from snowflake to paired microplates, dumbbell and spindle microstructures. J. Phys. Chem., C. 111, 9049-9054.
Zhao, Y. M., Li, Y. H., Ma, R. Z., Roe, M. J., McCartney, D. G., & Zhu, Y. Q. (2006). Growth and characterization of iron oxide nanorods/nanobelts prepared by a simple iron-water reaction. Small, 2(3), 422-427.
Zhou, W., He, W., Ma, J., Wang, M., Zhang, X., Yan, S., Tian, X., Sun, X., & Han, X. (2009). Biosynthesis of mesoporous organic-inorganic hybrid Fe2O3 with high photocatalytic activity. Mater. Sci. Eng., C. 29, 1893-1896.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.