Roles of reactive oxygen species (ROS) in inflammation and cancer

Authors

  • Boondaree Siriwarin Graduate School, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
  • Natthida Weerapreeyakul Center for Research and Development of Herbal Health Products (CRD-HHP), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand

Keywords:

reactive oxygen species (ROS), inflammation, cancer, apoptosis

Abstract

Cancer can be caused by either endogenous (genetic disorders and impairments of the immune system) or exogenous (environmental, carcinogen, infection, and persistent inflammation) factors.  Inflammation is an important physiological defense response of the biological system to protect cells or tissues from injury or infection.  Acute inflammation occurs over a short duration as part of the normal defense response, while chronic inflammation is a prolonged reaction related to various diseases including carcinogenesis.  Many types of immune cells are involved directly or indirectly in chronic inflammation in the production of inflammatory cytokines and it appears that chronic inflammation predisposes susceptible cells to mutation(s).  Reactive oxygen species (ROS) are one of the mediators produced by inflammatory cells to eradicate invading pathogens.  Persistent production of ROS during chronic inflammation can overcome antioxidant defenses leading to intense oxidative stress.  Consequently, cellular structures and DNA become damaged, which is a critical aspect of carcinogenesis.  Notwithstanding, ROS can induce apoptotic cell death when cells are exposed at optimum levels and time to ROS.  ROS generation through radiotherapy and some types of chemotherapy is therefore a goal of cancer treatment.  Care must be taken, however, as ROS can cause serious side-effects.  This paradoxical effect of ROS—carcinogenesis vs. cancer therapy—depends on the level intracellular ROS and exposure time.  In this review, we reported the associations of chronic inflammation, ROS and carcinogenesis as well as the role of ROS in cancer treatment.  The mechanism of the association of ROS with inflammation and carcinogenesis remain inconclusive, so several research studies have focused upon investigating these phenomena.

References

Abbas, A. K., Lichtman, A. H., & Pillai, S. (2010). Cellular and molecular immunology (6th ed.). Philadelphia, PA, USA: Elsevier.

Aggarwal, B. B., Shishodia, S., Sandur, S. K., Pandey, M. K., & Sethi, G. (2006). Inflammation and cancer: how hot is the link? Biochemical Pharmacology, 72(11), 1605-1621.

Balkwill, F., & Mantovani, A. (2001). Inflammation and cancer: back to Virchow? Lancet, 357(9255), 539-545. doi:10.1016/S0140-6736(00)04046-0

Bedard, K., & Krause, K. H. (2007). The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiological Reviews, 87(1), 245-313. DOI: 10.1152/physrev.00044.2005

Berenblum, I., & Schubik, P. (1949). An experimental study of the initiating stage of carcinogenesis, and a re-examination of the somatic cell mutation theory of cancer. British Journal of Cancer, 3(1), 109-118.

Brigelius-Flohe, R., Banning, A., Kny, M., & Bol, G. F. (2004). Redox events in interleukin-1 signaling. Archives of Biochemistry and Biophysics, 423(1), 66-73. DOI: 10.1016/j.abb.2003.12.008

Centelles, J. J. (2012). General aspects of colorectal cancer. International Scholarly Research Notices (ISRN) Oncology, 2012, Article ID 139268, 19 pages. doi: 10.5402/2012/139268

Chen, A. C-H., Arany, P. R., Huang, Y. Y., Tomkinson, E. M., Sharma, S. K., Kharkwal, G. B., . . . Hamblin, M. R. (2011). Low-level laser therapy activates NF-kB via generation of reactive oxygen species in mouse embryonic fibroblasts. PLoS One, 6(7), 21, (e22453). DOI: 10.1371/journal.pone.0022453

Coussens, L. M., & Werb, Z. (2002). Inflammation and cancer. Nature, 420(6917), 860-867.

de Visser, K. E., Eichten, A., & Coussens, L. M. (2006). Paradoxical roles of the immune system during cancer development. Nature Reviews Cancer, 6(1), 24-37.

Dreher, D., & Junod, A. F. (1996). Role of oxygen free radicals in cancer development. European Journal of Cancer, 32(1), 30-38. DOI: 10.1016/0959-8049(95)00531-5

Droge, W. (2002). Free radicals in the physiological control of cell function. Physiological Reviews, 82(1), 47-95.

Fan, Y., Mao, R., & Yang, J. (2013). NF-kappaB and STAT3 signaling pathways collaboratively link inflammation to cancer. Protein & Cell, 4(3), 176-185. doi: 10.1007/s13238-013-2084-3

Federico, A., Morgillo, F., Tuccillo, C., Ciardiello, F., & Loguercio, C. (2007). Chronic inflammation and oxidative stress in human carcinogenesis. International Journal of Cancer, 121(11), 2381-2386.

Gloire, G., Legrand-Poels, S., & Piette, J. (2006). NF-kappaB activation by reactive oxygen species: fifteen years later. Biochemical Pharmacology, 72(11), 1493-1505. DOI: 10.1016/j.bcp.2006.04.011

Gough, D. R., & Cotter, T. G. (2011). Hydrogen peroxide: a Jekyll and Hyde signalling molecule. Cell Death and Disease, 2, e213. doi:10.1038/cddis.2011.96

Grivennikov, S. I., Greten, F. R., & Karin, M. (2010). Immunity, inflammation, and cancer. Cell, 140(6), 883-899. doi:10.1016/j.cell.2010.01.025.

Hussain, S. P., Hofseth, L. J., & Harris, C. C. (2003). Radical causes of cancer. Nature Reviews Cancer, 3(4), 276-285. doi:10.1038/nrc1046

Hussain, S. P., & Harris, C. C. (2007). Inflammation and cancer: an ancient link with novel potentials. International Journal of Cancer, 121(11), 2373-2380. DOI: 10.1002/ijc.23173

Kamp, D. W., Shacter, E., & Weitzman, S. A. (2011). Chronic inflammation and cancer: the role of the mitochondria. Oncology, 25(5), 400-410.

Khansari, N., Shakiba, Y., & Mahmoudi, M. (2009). Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. Recent Patents on Inflammation & Allergy Drug Discovery, 3(1), 73-80.

Kirkinezos, I. G., & Moraes, C. T. (2001). Reactive oxygen species and mitochondrial diseases. Seminars in Cell and Developmental Biology, 12(6), 449-457. DOI: 10.1006/scdb.2001.0282

Klaunig, J. E., & Kamendulis, L. M. (2004). The role of oxidative stress in carcinogenesis. Annual Review of Pharmacology and Toxicology, 44, 239-267.

Lee, H., Pal, S. K., Reckamp, K., Figlin, R. A., & Yu, H. (2011). STAT3: a target to enhance antitumor immune response. Current Topics Microbiology and Immunology, 344, 41-59. doi: 10.1007/82_2010_51

Lin, W. W., & Karin, M. (2007). A cytokine-mediated link between innate immunity, inflammation, and cancer. Journal of Clinical Investigation, 117(5), 1175-1183. doi:10.1172/JCI31537

Loft, S., & Poulsen, H. E. (1996). Cancer risk and oxidative DNA damage in man. Journal of Molecular Medicine, 74(6), 297-312. DOI: 10.1007/BF00207507

Lu, H., Ouyang, W., & Huang, C. (2006). Inflammation, a key event in cancer development. Molecular Cancer Research, 4(4), 221-233.

Macarthur, M., Hold, G. L., & El-Omar, E. M. (2004). Inflammation and Cancer II. Role of chronic inflammation and cytokine gene polymorphisms in the pathogenesis of gastrointestinal malignancy. American Journal of Physiology – Gastrointestinal and Liver Physiology, 286(4), G515-G520.

Manda, G., Nechifor, M. T., & Neagu, T. M. (2009). Reactive oxygen species, cancer and anti-cancer therapies. Current Chemical Biology, 3(1), 22-46. DOI: 10.2174/2212796810903010022

Mantovani, A. (2005). Inflammation by remote control. Nature, 435, 752-753.

Oh, H., Takagi, H., Takagi, C., Suzuma, K., Otani, A., Ishida, K., . . . Honda, Y. (1999). The potential angiogenic role of macrophages in the formation of choroidal neovascular membranes. Investigative Ophthalmology & Visual Science, 40(9), 1891-1898.

Pelicano, H., Carney, D., & Huang, P. (2004). ROS stress in cancer cells and therapeutic implications. Drug Resistance Updates, 7(2), 97-110.

Philip, M., Rowley, D. A., & Schreiber, H. (2004). Inflammation as a tumor promoter in cancer induction. Seminars in Cancer Biology, 14(6), 433-439.

Quinn, M. T., Ammons, M. C., & Deleo, F. R. (2006). The expanding role of NADPH oxidases in health and disease: no longer just agents of death and destruction. Clinical Science, 111(1), 1-20. DOI: 10.1042/CS20060059

Reuter, S., Gupta, S. C., Chaturvedi, M. M., & Aggarwal, B. B. (2010). Oxidative stress, inflammation, and cancer: how are they linked? Free Radical Biology and Medicine, 49(11), 1603-1616.

Schetter, A. J., Heegaard, N. H., & Harris, C. C. (2010). Inflammation and cancer: interweaving microRNA, free radical, cytokine and p53 pathways. Carcinogenesis, 31(1), 37-49. doi: 10.1093/carcin/bgp272

Siomek, A., Brzoska, K., Sochanowicz, B., Gackowski, D., Rozalski, R., Foksinski, M., . . . Olinski, R. (2010). Cu,Zn-superoxide dismutase deficiency in mice leads to organ-specific increase in oxidatively damaged DNA and NF-kappaB1 protein activity. Acta Biochimica Polonica, 57(4), 577-583.

Valavanidis, A., Vlachogianni, T., Fiotakis, K., & Loridas, S. (2013). Pulmonary oxidative stress, inflammation and cancer: respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. International Journal of Environmental Research and Public Health, 10(9), 3886-3907. doi:10.3390/ijerph10093886

Valko, M., Rhodes, C. J., Moncol, J., Izakovic, M., & Mazur, M. (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions, 160(1), 1-40.

Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. International Journal of Biochemistry & Cell Biology, 39(1), 44-84.

Wagner, B. A., Buettner, G. R., Oberley, L. W., Darby, C. J., & Burns, C. P. (2000). Myeloperoxidase is involved in H2O2-induced apoptosis of HL-60 human leukemia cells. The Journal of Biological Chemistry, 275(29), 22461-22469.

Wang, R., Dashwood, W. M., Nian, H., Lohr, C. V., Fischer, K. A., Tsuchiya, N., . . . Dashwood, R. H. (2011). NADPH oxidase overexpression in human colon cancers and rat colon tumors induced by 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). International Journal of Cancer, 128(11), 2581-2590. DOI: 10.1002/ijc.25610

Wu, Y., Lu, J., Antony, S., Juhasz, A., Liu, H., Jiang, G., . . . Doroshow, J. H. (2013). Activation of TLR4 is required for the synergistic induction of dual oxidase 2 and dual oxidase A2 by IFN-gamma and lipopolysaccharide in human pancreatic cancer cell lines. Journal of Immunology, 190(4), 1859-1872. doi: 10.4049/jimmunol.1201725

Yamaguchi, R., Hirano, T., Asami, S., Sugita, A., & Kasai, H. (1996). Increase in the 8-hydroxyguanine repair activity in the rat kidney after the administration of a renal carcinogen, ferric nitrilotriacetate. Environmental Health Perspectives, 104, 651-653.

Yang, D., Elner, S. G., Bian, Z. M., Till, G. O., Petty, H. R., & Elner, V. M. (2007). Pro-inflammatory cytokines increase reactive oxygen species through mitochondria and NADPH oxidase in cultured RPE cells. Experimental Eye Research, 85(4), 462-472. doi:10.1016/j.exer.2007.06.013

Yu, H., Pardoll, D., & Jove, R. (2009). STATs in cancer inflammation and immunity: a leading role for STAT3. Nature Reviews Cancer, 9(11), 798-809. doi: 10.1038/nrc2734

Downloads

Published

2023-02-19

How to Cite

Boondaree Siriwarin, & Natthida Weerapreeyakul. (2023). Roles of reactive oxygen species (ROS) in inflammation and cancer. Journal of Current Science and Technology, 4(2), 177–191. Retrieved from https://ph04.tci-thaijo.org/index.php/JCST/article/view/561

Issue

Section

Review Article