The effect of Si poisons on Co3O4-CeO2 catalyst: comparison with a Pt/Al2O3 catalyst


  • Shouichi Somekawa Tokyo Metropolitan Industrial Technology Research Institute, 2-4-10 Aomi, Koto-ku, Tokyo 135-0064, Japan
  • Toshiya Hagiwara Tokyo Metropolitan Industrial Technology Research Institute, 2-4-10 Aomi, Koto-ku, Tokyo 135-0064, Japan


odor control, Si poison, Co3O4-CeO2, honeycomb catalyst, noble metal free


The effect of Si poison on conventional Pt/Al2O3 catalyst and newly developed Co3O4-CeO2 catalyst have been investigated.  The effect of Si poison deactivation on the Co3O4-CeO2 catalyst was smaller than that on the Pt/Al2O3 catalyst.  Hexamethyldisilazane (HMDS) was used as a model compound to simulate gaseous silicon poisoning.  It was suggested that the small amount of Si species (except SiO2) negatively influenced the Pt catalyst activity.  Most of the HMDS was converted into SiO2 during the reaction, which covered the surface of both catalysts.  The SiO2 was removed when the catalysts were subjected to air blowing treatment.


Arnby, K., Rahmani, M., Sanati, M., Cruise, N., Carlsson, A. A., & Skoglundh, M. (2004). Characterization of Pt/γ-Al2O3 catalysts deactivated by hexamethyldisiloxane. Applied Catalysis B: Environmental, 54(1), 1-7. DOI: 10.1016/j.apcatb.2004.06.007

Browning, E. (1965). Toxicity and metabolism of industrial solvents. New York, USA: Elsevier Publishing Company.

Bueno-Lόpez, A., Krishna, K., & Makkee, M. (2008). Oxygen exchange mechanism between isotopic CO2 and Pt/CeO2. Applied Catalysis A: General, 342(1-2), 144-149.

Grbic, B., Radic, N., & Terlecki-Baricevic, A. (2004). Kinetics of deep oxidation of n-hexane and toluene over Pt/Al2O3 catalysts: Oxidation of mixture. Applied Catalysis B: Environmental, 50(3), 161-166. DOI: 10.1016/j.apcatb.2004.01.012

Kummer, J. T. (1980). Catalysts for automobile emission control. Progress in Energy and Combustion Science, 6(2), 177-199. DOI: 10.1016/0360-1285(80)90006-4

Larsson, A., Rahmani, M., Arnby, K., Sohrabi, M., Skoglundh, M., Cruise, N., & Sanati, M. (2007). Pilot-scale investigation of Pt/alumina catalysts deactivation by organosilicon in the total oxidation of hydrocarbons. Topics in Catalysis 45(1-4), 121-124.

Libanati, C., Ullenius, D. A., & Pereira, C. J. (1998). Silica deactivatrion of bead VOC catalysts. Applied Catalysis B: Environmental, 15(1-2), 21-28. DOI: 10.1016/S0926-3373(97)00033-7

Lund, H. F. (1971). Industrial Pollution Control Handbook. New York, USA: Mcgraw-hill Book Company.

Musialik-Piotrowska, A., & Landmesser, H. (2008). Noble metal-doped perovskites for the oxidation of organic air pollutants. Catalysis Today, 137(1-2), 357-361. DOI: 10.1016/j.cattod.2008.01.005

Papaefthimiou, P., Ioannides, T., & Verykios, X. E. (1998). Performance of doped Pt/TiO2 (W6+) catalysts for combustion of volatile organic compounds (VOCs). Applied Catalysis B: Environmental, 15(1-2), 75-92. DOI: 10.1016/S0926-3373(97)00038-6

Somekawa, S., Yuliati, L., Ishikawa, A., Takanabe, K., & Domen, K. (2010). Simple, low-cost preoaration of high surface area Co3O4-CeO2 catalyst for total decomposition of toluene. Chemistry Letters, 39, 26-27.

Tang, S., Lin, J., & Tan, K. L. (1999). Characterization and reactivity of a-Al2O3-supported Pt–Co bimetallic catalysts. Surface and Interface Analysis, 28(1), 155-158.

Tsou, J., Magnoux, P., Guisnet, M., Órfão, J. J. M., & Figueiredo, J. L. (2005). Catalytic oxidation of volatile organic compounds: Oxidation of methyl-isobutyl-ketone over Pt/zeolite catalysts. Applied Catalysis B: Environmental, 57(2), 117-123. DOI: 10.1016/j.apcatb.2004.10.013

Windawi, H., & Zhang Z.,C. (1996). Catalytic destruction of halogenated air toxins and the effect of admixture with VOCs. Catalysis Today, 30(1-3), 99-105. DOI: 10.1016/0920-5861(95)00331-2




How to Cite

Shouichi Somekawa, & Toshiya Hagiwara. (2023). The effect of Si poisons on Co3O4-CeO2 catalyst: comparison with a Pt/Al2O3 catalyst. Journal of Current Science and Technology, 5(1), 43–48. Retrieved from



Research Article