Synchronization of chaotic systems based on an interconnection and damping assignment-passivity-based control
Keywords:
chaotic synchronization, nonlinear control, interconnection and damping assignment passivity-based control, Genesio system, Chua’s circuit systemAbstract
This paper presents the synchronizations of chaotic nonlinear systems. With the help of a passivity-based control design [interconnection and damping assignment passivity-based control (IDA-PBC)] method, a nonlinear control strategy is proposed to achieve the chaotic synchronization. In particular, there are two chaotic systems of interest, Genesio system and Chua's circuit system, which are employed as two examples for illustration. The simulations indicate the effectiveness and feasibility of the proposed method to synchronize the chaotic systems of interest. In addition, the performances of the proposed control scheme are evaluated and compared with an existing nonlinear control, in particular, backstepping controller.
References
Chen, S., & Lu, J. (2002). Synchronization of an uncertain unified chaotic system via adaptive control. Chaos, Solitons & Fractrals, 14(4), 643-647. DOI: 10.1016/S0960-0779(02)0006-1
Dorfler, F., Johnsen, J. K., & Allgower, F. (2009). An introduction to interconnection and damping assignment passivity-based control in process engineering. Journal of Process Control, 19(9), 1413-1426. DOI: 10.1016/j.jprocont.2009.07.015
Galaz, M., Ortega, R., Bazanella, A. S., & Stankovic, A. M. (2003). An energy-shaping approach to the design of excitation control of synchronous generators. Automatica, 39(1), 111-119. DOI: 10.1016/S0005-1098(02)00177-2
Kanchanaharuthai, A., Chankong, V., & Loparo, K. A. (2015). Transient stability and voltage regulation in multi-machine power systems vis-á-vis STATCOM and battery energy storage. IEEE Transactions on Power Systems, 30(5), 2404-2416. DOI: 10.1109/TPWRS.2014.2359659
Khalil, H. K. (2002). Nonlinear Systems, New Jersey, USA: Prentice-Hall.
Krstic, M., Kanellakopoulos I., & Kokotovic, P. (1995). Nonlinear and Adaptive Control Design, New York, USA: John Wiley & Son.
Li, D. J. (2012). Adaptive output feedback control of uncertain nonlinear chaotic systems based on dynamic surface control technique. Nonlinear Dynamics, 68(1/2), 235-243. DOI: 10.1007/S1107-011-0222-0
Mahboobi, S. H., Shahrokhi, M., & Pishkenari, H. N. (2006). Observer-based control design for three well-known chaotic systems. Chaos, Solitons & Fractrals, 29(2), 381-392. DOI: 10.1016/j.chaos.2005.08.042
Ortega, R., Van der Schaft, A., Maschke, B., & Escobar, G. (2002). Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica, 38(4), 585-596. DOI: 10.1016/S0005-1098(01)00278-3
Ortega, R., & Garcia-Canseco, E. (2004). Interconnection and damping assignment passivity-based control: a survey. European Journal of Control, 10(5), 432-450. DOI: 10.3166/ejc.10.432-450
Ortega, R., Galaz, M., Astolfi, A., Sun, Y., & Shen, T. (2005). Transient stabilization of multi-machine power systems with nontrivial transfer conductances. IEEE Transaction on Automatic Control, 50(1), 60-75. DOI: 10.1109/TAC.2004.840477
Ortega, R., Castanos, F., & Astolfi, A. (2008). Control by interconnection and standard passivity-based control of Port-Hamiltonian systems. IEEE Transactions on Automatic Control, 53(11), 2527-2542. DOI: 10.1109/TAC.2008.2006930
Ott, E., Grebogi, C., & Yorke, J. A. (1990). Controlling chaos. Physical Review Letters, 64, 1196-1199. DOI: http://dx.doi.org/10.1103/PhysRevLett.64.1196
Park, J. H. (2006). Synchronization of Genesio chaotic via backstepping approach. Chao, Solitons & Fractrals, 27(5), 1369-1375. DOI: 10.1016/j.chaos.2005.05.001
Pecora, L. M., & Carroll, T. L. (1990). Synchronzation in chaotic systems. Physical Review Letters, 64, 821-824. DOI: http://dx.doi.org/10.1103/PhysRevLett.64.821
Shen, T., Sun, Y., Oretga, R., & Mei, S. (2005). Energy-shaping control of synchronous generators with exciter-governor dual control loop. International Journal of Control, 78(2), 100-111. DOI: 10.1080/00207170500032315
Wang, C. C., & Su, J. P. (2004). A new adaptive variable structure control for chaotic synchronization. Chaos, Solitons & Fractrals, 20(5), 967-977. DOI: 10.1016/j.chaos.2003.10.026
Xie, Q., Han, Z., & Zhang, W. (2012). Chaotification via system immersion. Journal of Computational and Applied Mathematics, 236, 1775-1782. DOI: 10.1016/j.cam.2011.10.008
Xie, Q., Han, Z., & Chen, Z. (2013). Adaptive synchronization of unified chaotic system via system immersion. Journal of Information and Computational Science, 10(9), 2693-2701. DOI: 10.12733/jics20101839
Yassen, M. T. (2007). Controlling, synchronization and tracking chaotic Liu system using active backstepping design. Physics Letters A, 360(4/5), 582-587. DOI: 10.1016/j.physleta.2006.08.067
Yu, Y., & Zhang, S. (2004). Adaptive backstepping synchronization of uncertain chaotic system. Chaos, Solitons & Fractrals, 21(3), 643-649. DOI: 10.1016/j.chaos.2003.12.067
Zeng, J., Zhang, Z., & Qiao, W. (2013). An interconnection and damping assignment passivity-based controller for a DC-DC boost converter with a constant power load. IEEE Transactions on Industrial Applications, 50(4), 2314-2322. DOI: 10.1109/IAS.2012.6374043
Zhang, H., Ma, X-K., & Liu, W-Z. (2004). Synchronization of chaotic systems with parametric uncertainty using active sliding mode control. Chaos, Solitons & Fractrals, 21(5), 1249-1257. DOI: 10.1016/j.chaos.2003.12.073
Zhou, J., & Er, M. J. (2007). Adaptive output control of a class of uncertain chaotic systems. Systems and Control Letters, 56(6), 452-460. DOI: 10.1016/j.sysconle.2006.12.002
Zhu, D., Zhou, D., Zhou, J., & Teo, K. L. (2012). Synchronization control for a class of underactuated mechanical systems via energy shaping. Journal of Dynamic Systems, Measurement, and Control, 134(4), 041007. DOI: 10.1115/1.4006073
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.