Scale-up and cultivation of microalgae from brackish water in Thailand in transparent high density polyethylene bags


  • Sasirin Labua Faculty of Biotechnology, College of Agricultural Innovation, Biotechnology and Food, Rangsit University Patumthani 12000, Thailand
  • Nopparat Inprasit Faculty of Biotechnology, College of Agricultural Innovation, Biotechnology and Food, Rangsit University Patumthani 12000, Thailand
  • Wilawan Ngamcharoen Faculty of Biotechnology, College of Agricultural Innovation, Biotechnology and Food, Rangsit University Patumthani 12000, Thailand


scale-up, microalgae, transparent high density polyethylene bag, lipid content, brackish water


The microalgae from brackish water in Thailand e.g. Bang Poo accommodation next to the sea, Bang Poo mangrove forest, watersides of both Asokaram Temple and Srichan waterside were cultivated in Watanabe’s medium, pH 6.5 in 5 liters PET bottles and transparent high density polyethylene bags.  Cultivation of microalgae in transparent high density polyethylene bags resulted maximum dry weight of 10.92 g l-1, 8.61 g l-1, 6.49 g l-1 and 5.47 g l-1 respectively.  Comparing the addition of glucose 0 g/L, glucose 1 g/L, FeCl3 0.003 g/L and FeCl3 1 g/L in Watanabe’s medium was investigated.  The results showed that adding glucose 1 g/L and FeCl3 0.003 g/L in Watanabe’s medium gave the maximum lipid content of microalgae from Bang Poo mangrove forest 50.72 %(w/w), microalgae from accommodation next to the sea 47.58%(w/w), microalgae from Srichan Temple’s waterside 34.36 %(w/w) and microalgae from Asokaram Temple’s waterside 32.35%(w/w) respectively.  In addition, scale-up and cultivation of microalgae from Bang Poo mangrove forest to 155 liters in transparent high density polyethylene bags, adding glucose 1 g/L ,FeCl3 0.003 g/L and CO2 10%(v/v) in Watanabe’s medium for 15 days was assessed.  Microalgal biomass was recovered by filtration and centrifugation at 8000 rpm for 15 min at 4 °C.  Algal cell were dried in an oven at 60°C for 2h and kept in a vacuum desiccator before use.  Determination of lipid content by hexane extraction gave 46.53 %(w/w) algae oil.


Amin, S. (2009). Review on biofuel oil and gas production processes for microalgae. Energy Conversion and Management, 50(7), 1834-1840. DOI: 10.1016/j.enconman.2009.03.001

Banerjee, A., Sharma, R., Chisti, Y., & Banerjee, U. C. (2002). Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Critical Reviews in Biotechnology, 22(3), 245-279.

Belarbie, E. H., Molina, E., & Chisti, Y.(2000). A process for high yield and scalable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil. Enzyme and Microbial Technology, 26(7), 516:529.

Bligh, E. G., & Dyer, W. J. (1959). A rapid method for total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37(8), 911-917.

Bumbak, F., Cook, S., Zachleder, V., Hauser, S., & Kovar, K. (2011). Best practice in heterotrophic high-cell density microalgal processes:achievements,potential and possible limitations. Applied Microbiology and Biotechnology, 91(1), 31-46. DOI: 10.1007/s00253-011-3311-6

Carman, K. R., Thistle, D., Ertman, S. C., & Foy, M. (1991). Nile Red as a probe for lipid-storage products in benthic copepods. Marine Ecology Progress Series, 74, 307-311.

Chen, W., Zhang, C., Song, I., Sommerfeld, M., & Hu, Q. (2009). A high throughput Nile Red method for quantitative measurement of neutral lipids in microalgae. Journal of Microbiological Methods, 77(1), 41-47. DOI: 10.1016/j.mimet.2009.01.001

Chen, W., Sommerfeld, M., & Hu, Q. (2011). Microwave-assisted nile red method for in vivo quantification of neutral lipids in microalgae. Bioresource Technology, 102(1): 135-141.

Chi, Z., O’Fallon, J. V., & Chen, S. (2011). Biocarbonate produced from carbon capture for algae culture. Trends in Biotechnology, 29(11), 537-541.

Chisti, Y. (2012). Raceways-based production of algal crude oil. In: Posten, C., Walter, C. (Eds.). Microalgal Biotechnology: potential and Production (pp. 113-146). Berlin, Germany: De Gruyter.

Chisti, Y. (2013). Constraints to commercialization of algal fuels. Journal of Biotechnology, 167(3), 201-214. DOI:10.1016/j.jbiotec.2013.07.020

Cooksey, K. E., Guckert, J. B., Williams, S. A., & Callis, P. R. (1987). Fluorometric determination of the neutral lipid content of microalgal cells using Nile Red. Journal of Microbiological Methods, 6(6), 333-345. DOI: 10.1016/0167-7012(87)90019-4

Cooney, M., Young, C., & Nagle, N. (2009). Extraction of bio-oils from microalgae. Separation & Purification Reviews, 38(4), 291-325. DOI: 10.1080/15422110903327919

Doucha, J., Straka, F., & Livansky, K. (2005). Utilization of fuel gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. Journal of Applied Phycology, 17(5), 403-412. DOI: 10.1007/s10811-005-8701-7

Elsey, D., Jameson, D., Raleigh, B., & Cooney, M. J. (2007). Fluorescent measurement of microalgal neutral lipids. Journal of Microbiological. Methods, 68(3), 639-642. DOI: 10.1016/j.mimet.2006.11.008

Fedorov, A. S., Kosourov, S., Ghirardi, M. L., & Seibert, M. (2005). Continuous H2 photoproduction by Chlamydomonas reinhardtii using a novel two-stage, sulfate-limited chemostat system. Applied Biochemistry and Biotechnology, 121-124, 403-412.

Folger, P. CRS Report for Congress. (2010). Carbon capture: a technology assessment. Congressional Research service, Washinton, DC., USA.

Gao, C., Xiong, W., Zhang, Y., Yuan, W., & Wu, Q. (2008). Rapid quantitation of lipid in microalgae by time-domain nuclear magnetic resonance. Journal of Microbiological Methods, 75(3), 437-440. DOI: 10.1016/j.mimet.2008.07.019

Gavrilescu, M., & Chisti, Y. (2005). Biotechnology-a sustainable alternative for chemical industry. Biotechnology Advances, 23(7-8), 471-499. DOI: 10.1016/j.biotechadv.2005.03.004

Ghirardi, M. L., Zhang, L., Lee, J. W., Flynn, T., Seibert, M., Greenbaum, E., & Melis, A. (2000). Microalgae: a green source of renewable H2. Trends in Biotechnology, 18(12), 506-511. DOI: 10.1016/S0167-7799(00)01511-0

Griffiths, M. J., & Harrison, S. T. I. (2009). Lipid productivity as a key characteristic for choosing algal species for biodiesel production. Journal of Applied Phycology, 21(5), 493-507. DOI: 10.1007/s10811-008-9392-7

Grima, M. E., Fernandez, J., Acien Fernandez, F. G., & Chisti, Y. (2001). Tubular photobioreactor design for algal cultures. Journal of Biotechnology, 92(2), 113-131. DOI: 10.1016/S0168-1656(01)00353-4

Grima, E. M., Belarbi, E. H., Acien Fernandez, F. G., Robles Medina, A., & Chisti, Y. (2003). Recovery of microalgal biomass and metabolites process options and economics. Biotechnology Advances, 20(7-8), 491-515. DOI: 10.1016/S0734-9750(02)00050-2

Guschina, I. A., & Harwood, J. L. (2006). Lipid and lipid metabolism in eukaryotic algae. Progress in Lipid Research, 45(2), 160-186. DOI: 10.1016/j.plipres.2006.01.001

Ho, S. H., Huang, S.,W., Chen, C. Y., Kondo, A. & Chang, J. (2013). Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresource Technology, 135, 191-198. DOI: 10.1016/j.biortech.2012.10.015

Huang, G. H., Chen, F., Wei, D., Zhang, X. W., & Chen, G. (2010). Biodiesel production by microalgal biotechnology. Applied Energy, 87, 38-46.

Kapdan, I. K., & Kardi, F. (2006). Bio-hydrogen production from waste materials. Enzyme and Microbial Technology, 38(5), 569-582. DOI: 10.1016/j.enzmictec.2005.09.015

Kimura, K. (2004). Rapid estimation of lipids in oleaginous fungi and yeasts using Nile Red fluorescence. Journal of Microbiological Methods, 56(3), 331-338. DOI: 10.1016/j.mimet.2003.10.018

Kumar, A., Ergas, S., Yuan, X., Sahu, A., Zhang, Q., Dewulf, J., . . . Langenhove, H. (2010). Enhance CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trend in Biotechnology, 28(7), 371-380. DOI:

Laurens, L. M. L., & Wolfrum, E. J. (2010). Feasibility of spectroscopic characterization of algal lipids: chemometric correlation of NIR and FTIR spectra with exogenious lipids in algal biomass. BioEnergy Research, 4(1), 22-35. DOI: 10.1007/s12155-010-9098-y

Lee, J. Y., Yoo, C., Jun, S. Y., Ahn, C. Y., & Oh, H. M. (2010). Comparison of several methods for effective lipid extraction from microalgae. Bioresource technology, 101(1), Supplement), S75-S77. DOI: 10.1016/j.biortech.2009.03.058

Lestari, S., Maki-Arvela, P., Beltramini, J., Lu, G., & Murzin, D. (2009) Transforming Triglycerides and Fatty Acids into Biofuels. ChemSusChem, 2(12), 1109-1119. DOI:10.1002/cssc.200900107

Lu, J., Sheahan, C., & Fu, P. (2001). Metabolic engineering of algae for fourth generation biofuels production. Energy and environmental Science; 4, 2451-2466. DOI: 10.1039/C0EE00593B

Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: a review. Renewable and Sustainable Energy Reviews, 14(1), 217-232. DOI: 10.1016/j.rser.2009.07.020

Matsumoto, M., Yokouchi, H., Suzuki, N., Ohata, H., & Matsunaga ,T. (2003). Saccharification of marine microalgae using marine bacteria for ethanol production. Applied Biochemistry and Biotechnology, 105(1), 247-254.

Melis, A. (2002). Green alga hydrogen production: progress,challenges and prospects. International Journal of Hydrogen Energy, 27(11), 1217-1228. DOI: 10.1016/S0360-3199(02)00110-6

Metting, B., & Pyne, J. W. (1986). Biologically-active compounds from microalgae. Enzyme and Microbial Technology, 8(7), 386-394. DOI: 10.1016/0141-0229(86)90144-4

Metz, B., Davidson, O., de Coninck, H., Loos, M., & Meyer, L. (2005). Carbon Capture and Storage. Cambridge, England: Cambridge University Press

Metzger, P., & Largeau, C. (2005). Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Applied Microbiology and Biotechnology, 66(5), 486-496. DOI: 10.1007/s00253-004-1779-z

Nakano, S., Chang, K. H., Shijima, A., Miyamoto, H., Sato, Y., Noto, Y., . . . Sakamoto, M. (2014). A usage of CO2 hydrate: Convenient method to increase CO2 concentration in culturing algae. Bioresource Technology, 173, 444-448. DOI: 10.1016/j.biortech.2014.09.019

Nichols, P. D., Petrie, J., & Singh, S. (2010). Long-chain omega-3 oils- an update on sustainable sources. Nutrients, 2(6), 572-585. DOI: 10.3390/nu2060572

Sanchez Miron, A., Ceron Garcia, M. C., Contreras Gomez, A., Garcia Camacho, F., Molina Grima, E., & Chisti, Y. (2003). Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. Biochemical Engineering Journal, 16(3), 287-297. DOI: 10.1016/S1369-703X(03)00072-X

Sayre, R. (2013). Using microalgae to produce biomass, mitigate carbon emission, and recycle nutrients. Boston, USA.

Seo, Y. H., & Han, J. I. (2014). Direct conversion from Jerusalem artichoke to hydroxymethylfurfural (HMF) using the Fenton reaction. Food Chemistry, 151, 207-211. DOI: 10.1016/j.foodchem.2013.11.067

Singh, S., Kate, B. N., & Banerjee, U. C. (2005). Bioactive Compounds from cyanobacteria and microalgae: an overview. Critical Reviews in Biotechnology, 25(3), 73-95. DOI:10.1080/07388550500248498

Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101(2), 87-96. DOI:10.1263/jbb.101.87

Stephenson, P. G., Moore, C. M., Terry, M. J., Zubkov, M. V., & Bibby, T. S. (2011). Improving photosynthesis for algal biofuels: toward a green revolution. Trends in Biotechnology, 29(12), 615-613.

Tabernero, A., Martin del Valle, E. M., & Galan, M. A. (2012). Evaluating the industrial potential of biodiesel from a microalgae heterotrophic culture:scale-up and economics. Biochemical Engineering Journal, 63, 104-115. DOI:10.1016/j.bej.2011.11.006

The Dow Chemical Company (NYSE: DOW). (2009). Dow Announces Plan to Build and Operate a Pilot-Scale Algae-based Integrated Biorefinery with Algenol Biofuels. Retrieved JUNE 29, 2009.

Tredici, M. R. (2004). Mass production of microalgae: Photobioreactors. In: Richmond, A., (Ed.). Handbook of microalgal culture: biotechnology and applied phycology (pp. 178-214). Oxford, UK: Blackwell Sci Ltd.

Uduman, N., Qi, Y., Danquah, M.K., Forde, G M., & Hoadley, A. (2010). Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. Journal of Renewable and Sustainable Energy 2, article 012701.

Walter, T. L., Purton, S., Becker, D. K., & Collet, C. (2005). Microalgae as bioreactor. Plant Cell Reports, 24, 629-641.

Ward, O. P., & Singh, A. (2005). Omega-3/6 fatty acids: alternative sources of production. Process Biochemistry, 40, 3627-3652.

Weyer, K. M., Bush, D. R., Darzins, A., & Wilson, B. D. (2010). Theorectical maximum algal oil production. Bioenergy Research, 3, 204-213.

Yoo, G., Yoo, Y., Kwon, J.-H., Darpito, C., Mishra, S. K., Pak, K., . . . Yang, J.-W. (2014). An effective, cost-efficient extraction method of biomass from wet microalgae with a functional polymeric membrane. Green Chemistry, 16, 312-319. DOI: 10.1039/C3GC41695J

Zhang, J., & Hu, B. (2012). A novel method to harvest microagae via co-culture of filamentous fungi to form cell pellets. Bioresource Technology, 114, 529-535. DOI: 10.1016/j.biortech.2012.03.054

Zhu, X.-G., Long, S. P., & Ort, D. R. (2008). What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Current Opinion in Biotechnology, 19(2), 153-159.




How to Cite

Sasirin Labua, Nopparat Inprasit, & Wilawan Ngamcharoen. (2023). Scale-up and cultivation of microalgae from brackish water in Thailand in transparent high density polyethylene bags. Journal of Current Science and Technology, 5(2), 136–173. Retrieved from



Research Article