Harvesting of microalgae oil from brackish water in Thailand

Authors

  • Sasirindara Labua Faculty of Biotechnology, College of Agricultural Innovation, Biotechnology and Food, Rangsit University, Patumthani 12000, Thailand
  • Thanawat Karkew Faculty of Biotechnology, College of Agricultural Innovation, Biotechnology and Food, Rangsit University, Patumthani 12000, Thailand

Keywords:

biomass, brackish water, efficient and economically, flocculation, harvesting and concentrating, microalgae

Abstract

The aim of this study was to assess 7 methods used for harvesting and concentrating microalgae from brackish water in Thailand and to perform a comparative analysis to determine the most efficient and economical dewatering methods for large scale processing of microalgae biomass.  The harvesting techniques investigated included sedimentation, vacuum filtration, centrifugation, organic flocculation, inorganic flocculation, auto flocculation, and bio-flocculation.  Five criteria were used for evaluating microalgae harvesting technique, namely: a. dewatering efficiency, b. cost, c. suitability for industrial scale, d. time, and e. reusability of media.  The results showed that harvesting microalgae oil by flocculation with 1.2 g/l Al2(SO4)3·18H2O was the most efficient and economically viable dewatering methods for large scale processing of microalgae biomass.

References

Al Hattab, M., Ghaly, A., & Hammoud, A. (2015). Microalgae harvesting methods for industrial production of biodiesel: Critical review and comparative analysis. Journal Fundamentals of Renewable Energy and Applications, 5(2), 1-26. DOI: http://dx.doi.org/10.4172/2090-4541.1000154

Brennan, L., & Owende, P. (2010). Biofuels from microalgae - A review of technologies for production, processing and extractions of biofuels and co products. Renewable and Sustainable Energy Reviews, 14, 557-577. DOI:http://dx.doi.org/10.1016/j.rser.2009.10.009

Chen, P., Min, M., Chen, Y., Wang, L., Li, Y., Chen, Q., . . . Ruan, R. (2009). Review of the biological and engineering aspects of algae to fuels approach. International Journal of Agricultural and Biological Engineering, 2(4), 1-30. DOI: http://dx.doi.org/10.3965/j.issn.1934-6344.2009.04.001-030

Cole, T. M., & Wells, S.A. (2003). A two-dimensional, laterally averaged, hydrodynamic and water quality model, version 3.1. Instruction Report EL-03-1, US Army Engineering and Research Development Center, Vicksburg, MS, USA.

Danquah, M. K., Gladman, B., Moheimani, N., & Forde, G. M. (2009). Microalgal growth characteristics and subsequent influence on dewatering efficiency. Chemical Engineering Journal, 51(1-3), 73-78. DOI:http://dx.doi.org/10.1016/j.cej.2009.01.047

Demirbas, A. (2010). Use of algae as biofuel sources. Energy Conversion and Management, 51(12), 2738-2749. DOI: http://dx.doi.org/10.1016/j.enconman.2010.06.010

Grima, E. M., Belarbi, F. G., Fernandez, A., Medina, A. R., & Chitsi, Y. (2003). Recovery of microalgal biomass and metabolites: process options and economics. Biotechnology Advances, 20(7-8), 491-515. DOI: http://dx.doi.org/10.1016/S0734 9750(02)00050-2

Guanyi, C., Liu, Z., Yun, Q., & Yuan, L. C. (2014). Chitosan and its derivatives applied in harvesting microalgae for biodiesel production: An outlook. Journal of Nanomaterials, 4(1-9). DOI: http://dx.doi.org/10.1155/2014/217537

Gultom, S. O., & Hu, B. (2013). Review of microalgae harvesting via co-pelletization with filamentous fungus. Energies, 6(6), 5921-5939. DOI: http://dx.doi.org/10.3390/en6115921

Guzine, I., Diwanni. E. I., Shadia, A., Rafei, E. I., Hawash, S. I., & Enin, S. A. (2011). Optimized flocculation of microalgae for fuel oil and antioxidant production. Der Chemica Sinica, 4(12-25).

Harith, Z. T., Yusoff, F. M., Mohammed, M. S., Shariff, M., & Din, M. (2009). Effect of different flocculants on the flocculation performance of microalgae, Chaetoceros calcitrans. African Journal of Biotechnology, 8(21), 5971-5978.

Harun, R., Singh, M., Gareth, M. F., & Micheal, K. D. (2010). Bioprocess engineering of microalgae to produce a variety of consumer products. Renewable and Sustainable Energy Reviews, 14, 1037-1047. DOI: http://dx.doi.org/10.1016/j.rser.2009.11.004

Milledge, J. J., & Heaven, S. (2013). A review of the harvesting of micro-algae for biofuel production. Reviews in Environmental Science and Biotechnology, 12(2), 165-178. DOI: http://dx.doi.org/10.1007/s11157-012-9301-z

Olaizola, M. (2003). Commercial development of microalgal biotechnology: From the test tube to the marketplace. Biomolecular Engineering, 20, 459-466. DOI: http://dx.doi.org/10.1016/S1389-0344(03)00076-5

Pulz, O. (2001). Photobioreactors: production systems for phototrophic microorganisms. Applied Microbiology and Biotechnology, 57(3), 287-293.

Rashid, N., Rehman, M. S., & Han, J. I. (2013). Use of chitosan acid solution to improve separation efficiency for harvesting of the microalga Chorella vulgaris. Chemical Engineering Journal, 226, 238-242.

Salim, S., Bosma, R., Vermue, M. H., & Wijffels, R. H. (2011). Harvesting of microalgae by bio-flocculation. Journal of Applied Phycology, 23(5), 849-855. DOI: http://dx.doi.org/10.1007/s10811-010-9591-x

Sayyed, H., Sayyed, A., & Mazahar, F. (2010). Adsorption studies of Fe. (II) on low cost biomaterial. Advances in Applied Science Research, 1(3), 147-152.

Science, U. A. (2014). Filtration. Department of Chemistry and Biochemistry. University of Arizona, Tucson, Arizona. Accessed on October 22, 2014 from http://www.chem.arizona.edu/

Shelef, G., Sukenik, A., & Green, M. (1984). Microalgae harvesting and processing: A literature review. National Technical Information Service. U.S. Department of Commerce.

Slade, R., & Bauen, A. (2013). Microalgae cultivation for biofuels: Cost, energy balance, environmental impacts and future prospects. Biomass and Bioenergy, 53, 29-38. DOI: http://dx.doi.org/10.1016/j.biombioe.2012.12.019

Uduman, N., Qi, Y., Danquah, M. K., Forde, G. M., & Hoadley, A. (2010). Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. Journal of Renewable and Sustainable Energy, 2, 012701-012715. DOI: http://dx.doi.org/10.1063/1.3294480

Vandamme, D., Foubert, I., & Muylaert, K. (2013). Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends in Biotechnology, 31(4), 233-239. DOI: http://dx.doi.org/10.1016/j.tibtech.2012.12.005

Wahlen, B. D., Willis, R. M., & Seefeldt, L. C. (2011). Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed-cultures. Bioresource Technology, 102, 2727-2730. DOI: http://dx.doi.org/10.1016/j.biortech.2010.11.026

Wu, Z., Zhu, Y., Huang, W., Zhang, C., & Li, T. (2012). Evaluation of flocculation induced by pH increase for harvesting microalgae and reuse of flocculated medium. Bioresource Technoogyl, 110, 496-502. DOI: https://dx.doi.org/10.1016/j.biortech.2012.01.101

Xuan, D. T. T. (2009). Harvesting marine algae for biodiesel feedstock. Department of Environmental Engineering, National University of Singapore. Accessed on November 16, 2014 from www.nus.edu.sg/nurop/2009/FoE/U067436X.PDF

Zitelli, G. C., Rodolfi, L., Biondi, N., & Tredici, M. R. (2006). Productivity and photosynthetic efficiency of outdoor cultures of Tetraselmis suecica in annular columns. Aquaculture, 261, 932-943. DOI:http://dx.doi.org/10.1016/j.aquaculture.2006.08.011

Downloads

Published

2023-02-18

How to Cite

Sasirindara Labua, & Thanawat Karkew. (2023). Harvesting of microalgae oil from brackish water in Thailand. Journal of Current Science and Technology, 7(1), 49–57. Retrieved from https://ph04.tci-thaijo.org/index.php/JCST/article/view/524

Issue

Section

Research Article