In Vitro Assessment of Antimicrobial Activity and Synergistic Effects of Ethanolic Extracts from Six Medicinal Plants

Authors

  • Tak Karuncharoenpanich Department of Pharmacology, College of Pharmacy, Rangsit University, Pathum Thani, 12000, Thailand
  • Thidarat Phetmanee Department of Pharmacology, College of Pharmacy, Rangsit University, Pathum Thani, 12000, Thailand
  • Nalinee Pradubyat Department of Pharmacology, College of Pharmacy, Rangsit University, Pathum Thani, 12000, Thailand
  • Thanapat Songsak Department of Pharmacognosy, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
  • Suchada Jongrungruangchok Department of Pharmaceutical Chemistry, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
  • Fameera Madaka Sino-Thai Traditional Medicine Research Center, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
  • Thaniya Wunnakup Sino-Thai Traditional Medicine Research Center, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
  • Napaporn Lakkana Department of Pharmacology, College of Pharmacy, Rangsit University, Pathum Thani, 12000, Thailand

DOI:

https://doi.org/10.59796/jcst.V15N1.2025.85

Keywords:

antimicrobial activity, synergistic effect, antagonistic effect, Biancaea sappan (L.) Tod, Bauhinia malabarica Roxb

Abstract

This in vitro experimental study examines and evaluates the antimicrobial and synergistic effects of the ethanolic extract of six plants: Biancaea sappan (L.) Tod, Bauhinia malabarica Roxb, Carthamus tinctorius L., Derris scandens (Roxb.) Benth, Hibiscus sabdariffa L., and Piper nigrum L. against common microbial species representing gram-positive, gram-negative bacteria, and fungi, consisting of Staphylococcus aureus, Escherichia coli, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Candida albicans. The plants were extracted using 90% ethanol. According to the standard method of agar diffusion assay, the micro-dilution method for minimal inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined. This study found that among the six plants, only B. sappan and B. malabarica exhibited moderate inhibitory effects against S. aureus and S. epidermidis. B. sappan had MIC values of 250 µg/ mL and 125 µg/ mL, respectively, and B. malabarica showed MIC values of 62.50 µg/ mL and 31.25 µg/ mL, respectively. The synergistic effects of a combination of B. sappan and B. malabarica extracts at a ratio of 25:75 were analyzed, and it was found that the combination inhibited S. aureus and S. epidermidis with MIC values of 250 µg/ mL and 125 µg/ mL, respectively. The fractional inhibitory concentration index (FICI) and the fractional bactericidal concentration index (FBCI) indicated antagonistic or synergistic effects of the combination, with FICI and FBCI values of 2.5–5.0 for both B. sappan and B. malabarica extracts in the 25:75 mixture. In conclusion, single plant ethanolic extracts of B. sappan and B. malabarica possess potent antimicrobial activity to varying degrees. However, the antimicrobial potency of the 25:75 ratio mixture of these extracts was shown to decrease against the same organisms, with in vitro antimicrobial activity and antagonistic effects observed only against the tested gram-positive bacteria.

References

Abubakar, A. R., & Haque, M. (2020). Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes. Journal of Pharmacy and Bioallied Sciences, 12(1), Article 1. https://doi.org/10.4103/jpbs.JPBS_175_19

Acquavia, M. A., Pascale, R., Foti, L., Carlucci, G., Scrano, L., Martelli, G., ... & Lelario, F. (2021). Analytical Methods for Extraction and Identification of Primary and Secondary Metabolites of Apple (Malus domestica) Fruits: A Review. Separations, 8(7), Article 7. https://doi.org/10.3390/separations8070091

Adwan, G., Abu-Shanab, B., & Adwan, K. (2010). Antibacterial activities of some plant extracts alone and in combination with different antimicrobials against multidrug–resistant Pseudomonas aeruginosa strains. Asian Pacific Journal of Tropical Medicine, 3(4), 266–269. https://doi.org/10.1016/S1995-7645(10)60064-8

Ahmed, A. U. (2011). An overview of inflammation: Mechanism and consequences. Frontiers in Biology, 6(4), 274–281. https://doi.org/10.1007/s11515-011-1123-9

Aliyu, A. B., Ibrahim, M. A., Musa, A. M., Ibrahim, H., Abdulkadir, I. E., & Oyewale, A. O. (2009). Evaluation of antioxidant activity of leave extract of Bauhinia rufescens Lam. (Caesalpiniaceae). Journal of Medicinal Plants Research, 3(8), 563–567. https://doi.org/10.5897/JMPR.9000615

Álvarez-Martínez, F. J., Barrajón-Catalán, E., Herranz-López, M., & Micol, V. (2021). Antibacterial plant compounds, extracts and essential oils: An updated review on their effects and putative mechanisms of action. Phytomedicine, 90, Article 153626. https://doi.org/10.1016/j.phymed.2021.153626

Asgarpanah, J., & Kazemivash, N. (2013). Phytochemistry, pharmacology and medicinal properties of Carthamus tinctorius L. Chinese Journal of Integrative Medicine, 19(2), 153–159. https://doi.org/10.1007/s11655-013-1354-5

Ashokkumar, K., Murugan, M., Dhanya, M. K., Pandian, A., & Warkentin, T. D. (2021). Phytochemistry and therapeutic potential of black pepper [Piper nigrum (L.)] essential oil and piperine: A review. Clinical Phytoscience, 7(1), 52. https://doi.org/10.1186/s40816-021-00292-2

Atunnisa, W., Zamzani, I., & Nashihah, S. (2023). Antibacterial activity of Sappan (Caesalpinia sappan L.) wood methanol extract against Staphylococcus epidermidis. Media Farmasi: Jurnal Ilmu Farmasi, 20(1), Article 1. https://doi.org/10.12928/mf.v20i1.21900

Balali, G. I., Yar, D. D., & Sylverken, A. A. (2023). Antimicrobial activities of Hibiscus sabdariffa and Aspilia africana against clinical isolates of Salmonella typhi. Scientific African, 20, Article e01667. https://doi.org/10.1016/j.sciaf.2023.e01667

Balekundri, A., & Mannur, V. (2020). Quality control of the traditional herbs and herbal products: A review. Future Journal of Pharmaceutical Sciences, 6(1), Article 67. https://doi.org/10.1186/s43094-020-00091-5

Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71–79. https://doi.org/10.1016/j.jpha.2015.11.005

Baluchamy, P., & Subramanian, A. (2023). Phytochemicals screenings and evaluations of antibacterial and antioxidant activities of methanolic leaf extract of Senna auriculata (L). Roxb. Journal of Current Science and Technology, 13(2), 162-181. https://doi.org/10.59796/jcst.V13N2.2023.1734

Bashir, I., Dar, A. H., Dash, K. K., Pandey, V. K., Fayaz, U., Shams, R., ... & Singh, R. (2023). Deep eutectic solvents for extraction of functional components from plant-based products: A promising approach. Sustainable Chemistry and Pharmacy, 33, Article 101102. https://doi.org/10.1016/j.scp.2023.101102

Biswas, B., Rogers, K., McLaughlin, F., Daniels, D., & Yadav, A. (2013). Antimicrobial Activities of Leaf Extracts of Guava (Psidium guajava L.) on Two Gram-Negative and Gram-Positive Bacteria. International Journal of Microbiology, 2013(1), Article 746165. https://doi.org/10.1155/2013/746165

Blumenthal, M., Goldberg, A., & Brinckmann, J. (2000). Herbal medicine: Expanded Commission E monographs (with Internet Archive). (2000). Newton, MA : Integrative Medicine Communications. Retrieved from http://archive.org/details/herbalmedicineex0000unse

Bubonja-Šonje, M., Knežević, S., & Abram, M. (2020). Challenges to Antimicrobial Susceptibility Testing of Plant-derived Polyphenolic Compounds. Archives of Industrial Hygiene and Toxicology, 71(4), 300–311. https://doi.org/10.2478/aiht-2020-71-3396

Bulbul, I., Nahar, P., Ripa, F., & Haque, O. (2011). Antibacterial, cytotoxic and antioxidant activity of chloroform, n-hexane and ethyl acetate extracts of plant Amaranthus spinosus. International Journal of PharmTech Research, 3(3), 1675–1680.

Cacace, E., Kim, V., Varik, V., Knopp, M., Tietgen, M., Brauer-Nikonow, A., ... & Typas, A. (2023). Systematic analysis of drug combinations against gram-positive bacteria. Nature Microbiology, 8(11), 2196–2212. https://doi.org/10.1038/s41564-023-01486-9

Caesar, L. K., & Cech, N. B. (2019). Synergy and antagonism in natural product extracts: When 1 + 1 does not equal 2. Natural Product Reports, 36(6), 869–888. https://doi.org/10.1039/c9np00011a

Centers for Disease Control and Prevention (U.S.). (2019). Antibiotic resistance threats in the United States, 2019. Centers for Disease Control and Prevention (U.S.). https://doi.org/10.15620/cdc:82532

Chaudhry, F., Ahmad, M. L., Hayat, Z., Ranjha, M. M. A. N., Chaudhry, K., Elboughdiri, N., ... & Uddin, J. (2022). Extraction and Evaluation of the Antimicrobial Activity of Polyphenols from Banana Peels Employing Different Extraction Techniques. Separations, 9(7), Article 7. https://doi.org/10.3390/separations9070165

Chessa, D., Ganau, G., & Mazzarello, V. (2015). An overview of Staphylococcus epidermidis and Staphylococcus aureus with a focus on developing countries. The Journal of Infection in Developing Countries, 9(06), Article 06. https://doi.org/10.3855/jidc.6923

Chessa, D., Ganau, G., Spiga, L., Bulla, A., Mazzarello, V., Campus, G. V., & Rubino, S. (2016). Staphylococcus aureus and Staphylococcus epidermidis Virulence Strains as Causative Agents of Persistent Infections in Breast Implants. PloS One, 11(1), e0146668. https://doi.org/10.1371/journal.pone.0146668

Clinical and Laboratory Standards Institute. (2024). CLSI & Antimicrobial Susceptibility Testing (AST). https://clsi.org/meetings/susceptibility-testing-subcommittees/clsi-and-ast/

Costa, C., Campos, J., Gouvinhas, I., Pinto, A. R., Saavedra, M. J., & Novo Barros, A. (2023). Unveiling the potential of unexplored winery by-products from the Dão region: Phenolic composition, antioxidants, and antimicrobial properties. Applied Sciences, 13(18), Article 18. https://doi.org/10.3390/app131810020

Ćujić, N., Šavikin, K., Janković, T., Pljevljakušić, D., Zdunić, G., & Ibrić, S. (2016). Optimization of polyphenols extraction from dried chokeberry using maceration as traditional technique. Food Chemistry, 194, 135–142. https://doi.org/10.1016/j.foodchem.2015.08.008

Da-Costa-Rocha, I., Bonnlaender, B., Sievers, H., Pischel, I., & Heinrich, M. (2014). Hibiscus sabdariffa L. – A phytochemical and pharmacological review. Food Chemistry, 165, 424–443. https://doi.org/10.1016/j.foodchem.2014.05.002

Dafale, N. A., Semwal, U. P., Rajput, R. K., & Singh, G. N. (2016). Selection of appropriate analytical tools to determine the potency and bioactivity of antibiotics and antibiotic resistance. Journal of Pharmaceutical Analysis, 6(4), 207–213. https://doi.org/10.1016/j.jpha.2016.05.006

Donkor, M. N., Donkor, A.-M., & Mosobil, R. (2023). Combination therapy: Synergism among three plant extracts against selected pathogens. BMC Research Notes, 16(1), Article 83. https://doi.org/10.1186/s13104-023-06354-7

Elshikh, M., Ahmed, S., Funston, S., Dunlop, P., McGaw, M., Marchant, R., Banat, I. M. (2016). Resazurin-based 96-well plate microdilution method for the determination of minimum inhibitory concentration of biosurfactants. Biotechnology Letters, 38(6), 1015-1019. https://doi.org/10.1007/s10529-016-2079-2

Fernandes, A. J. D., Ferreira, M. R. A., Randau, K. P., de Souza, T. P., & Soares, L. A. L. (2012). Total Flavonoids Content in the Raw Material and Aqueous Extractives from Bauhinia monandra Kurz (Caesalpiniaceae). The Scientific World Journal, 2012, Article 923462. https://doi.org/10.1100/2012/923462

Fisher, M. C., Alastruey-Izquierdo, A., Berman, J., Bicanic, T., Bignell, E. M., Bowyer, P., ... & Verweij, P. E. (2022). Tackling the emerging threat of antifungal resistance to human health. Nature Reviews Microbiology, 20(9), 557–571. https://doi.org/10.1038/s41579-022-00720-1

Gouvinhas, I., Santos, R. A., Queiroz, M., Leal, C., Saavedra, M. J., Domínguez-Perles, R., ... & Barros, A. I. (2018). Monitoring the antioxidant and antimicrobial power of grape (Vitis vinifera L.) stems phenolics over long-term storage. Industrial Crops and Products, 126, 83–91. https://doi.org/10.1016/j.indcrop.2018.10.006

Grozdanova, T., Trusheva, B., Alipieva, K., Popova, M., Dimitrova, L., Najdenski, H., ... & Bankova, V. (2020). Extracts of medicinal plants with natural deep eutectic solvents: Enhanced antimicrobial activity and low genotoxicity. BMC Chemistry, 14(1), Article 73. https://doi.org/10.1186/s13065-020-00726-x

Haleem, A., Hameed, A., Al-Majeed, R., Hussein, N., Hikmat, R., & K. Queen, B. (2023). Anticancer, Antioxidant, Antimicrobial and Cytogenetic Effects of Ethanol Leaves Extract of Carthamus tinctorius. IOP Conference Series: Earth and Environmental Science, 1262, Article 052035. https://doi.org/10.1088/1755-1315/1262/5/052035

Han, C., Raksat, A., Atanu, M. S. H., Chang, L. K., Wall, M. M., & Chang, L. C. (2024). Investigation of antimicrobial, antioxidant, and cytotoxic activities of Boesenbergia rotunda rhizome extract. Journal of Current Science and Technology,14(1), Article 20. https://doi.org/10.59796/jcst.V14N1.2024.20

Hemthanon, T., & Ungcharoenwiwat, P. (2022). Antibacterial activity, stability, and hemolytic activity of heartwood extract from Caesalpinia sappan for application on nonwoven fabric. Electronic Journal of Biotechnology, 55, 9–17. https://doi.org/10.1016/j.ejbt.2021.10.002

Hikmawanti, N. P. E., Fatmawati, S., & Asri, A. W. (2021). The Effect of Ethanol Concentrations as The Extraction Solvent on Antioxidant Activity of Katuk (Sauropus androgynus (L.) Merr.) Leaves Extracts. IOP Conference Series: Earth and Environmental Science, 755(1), Article 012060. https://doi.org/10.1088/1755-1315/755/1/012060

Hussain, H., Al-Harrasi, A., Krohn, K., Kouam, S. F., Abbas, G., Shah, A., ... & Schulz, B. (2015). Phytochemical investigation and antimicrobial activity of Derris scandens. Journal of King Saud University - Science, 27(4), 375–378. https://doi.org/10.1016/j.jksus.2015.01.001

Igwe, O., & Okeke, I. (2017). Leaf and flower extract of Piliostigma malabaricum: Phytochemistry and antibacterial application. Journal of Applied Chemical Science International, 8(3), 89-94.

Ii, J. S. L., Weinstein, M. P., Bobenchik, A. M., Campeau, S., Cullen, S. K., Galas, M. F., … & Simner, P. J. (2022). M100 Performance standards for antimicrobial susceptibility testing. Clinical and Laboratory Standards Institute, 32nd Edition.

Ingle, K. P., Deshmukh, A. G., Padole, D. A., Dudhare, M. S., Moharil, M. P., & Khelurkar, V. C. (2017). Phytochemicals: Extraction methods, identification and detection of bioactive compounds from plant extracts. Journal of Pharmacognosy and Phytochemistry, 6(1), 32–36.

Irfan, S., Ranjha, M. M. A. N., Nadeem, M., Safdar, M. N., Jabbar, S., Mahmood, S., ... & Ibrahim, S. A. (2022). Antioxidant Activity and Phenolic Content of Sonication- and Maceration-Assisted Ethanol and Acetone Extracts of Cymbopogon citratus Leaves. Separations, 9(9), Article 9. https://doi.org/10.3390/separations9090244

Kaewamatawong, R., Kitajima, M., Kogure, N., & Takayama, H. (2008). Flavonols from Bauhinia malabarica. Journal of Natural Medicines, 62(3), 364–365. https://doi.org/10.1007/s11418-008-0249-9

Kongcharoensuntorn, W., Inthasorn, A., Kraekrathok, C., Chiangthong, S., & Dujjanakee, W. (2024). Momordica charantia L. with Oxy Combination of Momordica charantia L. with oxytetracycline enhanced antibacterial and antibiofilm activities against some multidrug-resistant bacteria. Journal of Associated Medical Sciences, 58(1), 8–14. Retrieved from https://he01.tci-thaijo.org/index.php/bulletinAMS/article/view/271956

Kowalska-Krochmal, B., & Dudek-Wicher, R. (2021). The minimum inhibitory concentration of antibiotics: Methods, interpretation, clinical relevance. Pathogens, 10(2), Article 2. https://doi.org/10.3390/pathogens10020165

Lamichhane, G., Devkota, H. P., Sai, K., & Poudel, P. (2022). Carthamus tinctorius L.: Traditional uses, phytochemistry, and pharmacological activities. In H. P. Devkota & T. Aftab (Eds.), Medicinal Plants of the Asteraceae Family: Traditional Uses, Phytochemistry and Pharmacological Activities (pp. 103–123). Springer Nature. https://doi.org/10.1007/978-981-19-6080-2_7

Leal, C., Gouvinhas, I., Santos, R. A., Rosa, E., Silva, A. M., Saavedra, M. J., & Barros, A. I. R. N. A. (2020). Potential application of grape (Vitis vinifera L.) stem extracts in the cosmetic and pharmaceutical industries: Valorization of a by-product. Industrial Crops and Products, 154, Article 112675. https://doi.org/10.1016/j.indcrop.2020.112675

Lee, Y., Robbins, N., & Cowen, L. E. (2023). Molecular mechanisms governing antifungal drug resistance. Npj Antimicrobials and Resistance, 1(1), 1–9. https://doi.org/10.1038/s44259-023-00007-2

Li, S., Jiang, S., Jia, W., Guo, T., Wang, F., Li, J., & Yao, Z. (2024). Natural antimicrobials from plants: Recent advances and future prospects. Food Chemistry, 432, Article 137231. https://doi.org/10.1016/j.foodchem.2023.137231

Madhiri, R., & Panda, D. J. (2018). A review on phytochemistry and pharmacological aspects of Derris scandens (ROXB.) Benth. Innoriginal: International Journal of Sciences, 1–4.

Manso, T., Lores, M., & de Miguel, T. (2021). Antimicrobial activity of polyphenols and natural polyphenolic extracts on clinical isolates. Antibiotics, 11(1), Article 46. https://doi.org/10.3390/antibiotics11010046

Muangrat, R., & Thipsuwan, Y. (2023). Sappan Heartwood (Caesalpinia sappan L.) Extract as a Natural Antimicrobial Used in Beetroot Juice by Accelerated Solvent Extraction. Current Research in Nutrition and Food Science Journal, 11(1), 127–140. https://dx.doi.org/10.12944/CRNFSJ.11.1.8

Murray, C. J., Ikuta, K. S., Sharara, F., Swetschinski, L., Aguilar, G. R., Gray, A., ... & Tasak, N. (2022). Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. The Lancet, 399(10325), 629–655. https://doi.org/10.1016/S0140-6736(21)02724-0

Nguyen, T. L. A., & Bhattacharya, D. (2022). Antimicrobial Activity of Quercetin: An Approach to Its Mechanistic Principle. Molecules, 27(8), Article 2494. https://doi.org/10.3390/molecules27082494

Nirmal, N. P., & Panichayupakaranant, P. (2015). Antioxidant, antibacterial, and anti-inflammatory activities of standardized brazilin-rich Caesalpinia sappan extract. Pharmaceutical Biology, 53(9), 1339–1343. https://doi.org/10.3109/13880209.2014.982295

Nirmal, N. P., Rajput, M. S., Prasad, R. G. S. V., & Ahmad, M. (2015). Brazilin from Caesalpinia sappan heartwood and its pharmacological activities: A review. Asian Pacific Journal of Tropical Medicine, 8(6), 421–430. https://doi.org/10.1016/j.apjtm.2015.05.014

Niu, Y., Wang, S., Li, C., Wang, J., Liu, Z., & Kang, W. (2020). Effective Compounds From Caesalpinia sappan L. on the Tyrosinase In Vitro and In Vivo. Natural Product Communications, 15(4), Article 1934578X20920055. https://doi.org/10.1177/1934578X20920055

Otto, M. (2009). Staphylococcus epidermidis – the “accidental” pathogen. Nature Reviews. Microbiology, 7(8), 555–567. https://doi.org/10.1038/nrmicro2182

Oulahal, N., & Degraeve, P. (2022). Phenolic-rich plant extracts with antimicrobial activity: an alternative to food preservatives and biocides?. Frontiers in Microbiology, 12, Article 753518. https://doi.org/10.3389/fmicb.2021.753518

Patthamasopasakul, R., Songsak, T., Kunaratnpruk, S., & Sucontphunt, A.(2024). Comparative study: extraction conditions and antioxidant and antibacterial activities of Gracilaria fisheri. Journal of Current Science and Technology, 14(3), Article 52. https://doi.org/10.59796/jcst.V14N3.2024.52

Pintać, D., Majkić, T., Torović, L., Orčić, D., Beara, I., Simin, N., Mimica–Dukić, N., & Lesjak, M. (2018). Solvent selection for efficient extraction of bioactive compounds from grape pomace. Industrial Crops and Products, 111, 379–390. https://doi.org/10.1016/j.indcrop.2017.10.038

POWO. (2024a). Bauhinia malabarica Roxb. | Plants of the World Online | Kew Science. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Retrieved from http://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:481478-1

POWO. (2024b). Biancaea sappan (L.) Tod. | Plants of the World Online | Kew Science. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Retrieved from http://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:481889-1

POWO. (2024c). Carthamus tinctorius L. | Plants of the World Online | Kew Science. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Retrieved from http://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:324467-2

POWO. (2024d). Derris scandens (Roxb.) Benth. | Plants of the World Online | Kew Science. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Retrieved from http://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:491427-1

POWO. (2024e). Hibiscus sabdariffa L. | Plants of the World Online | Kew Science. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Retrieved from http://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:326388-2

POWO. (2024f). Piper nigrum L. | Plants of the World Online | Kew Science. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Retrieved from http://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:682369-1

Prashith, T. R., Vinayaka, K. S., & Raghavendra, H. S. (2021). Caesalpinia sappan L.(Caesalpiniaceae): a review on its phytochemistry and pharmacological activities. Medicinal and aromatic plants: Traditional Uses. Phytochem. Pharmacol. Potential.

Puttarak, P., Sawangjit, R., & Chaiyakunapruk, N. (2016). Efficacy and safety of Derris scandens (Roxb.) Benth. for musculoskeletal pain treatment: A systematic review and meta-analysis of randomized controlled trials. Journal of Ethnopharmacology, 194, 316–323. https://doi.org/10.1016/j.jep.2016.09.021

Radulović, N. S., Blagojević, P. D., Stojanović-Radić, Z. Z., & Stojanović, N. M. (2013). Antimicrobial plant metabolites: Structural diversity and mechanism of action. Current Medicinal Chemistry, 20(7), 932–952. https://doi.org/10.2174/092986713805219136

Rajput, M. S., Nirmal, N. P., Nirmal, S. J., & Santivarangkna, C. (2022). Bio-actives from Caesalpinia sappan L.: Recent advancements in phytochemistry and pharmacology. South African Journal of Botany, 151, 60–74. https://doi.org/10.1016/j.sajb.2021.11.021

Reygaert, W. C. (2018). An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiology, 4(3), 482–501. https://doi.org/10.3934/microbiol.2018.3.482

Riaz, G., & Chopra, R. (2018). A review on phytochemistry and therapeutic uses of Hibiscus sabdariffa L. Biomedicine & Pharmacotherapy, 102, 575–586. https://doi.org/10.1016/j.biopha.2018.03.023

Rojas, J. J., Ochoa, V. J., Ocampo, S. A., & Muñoz, J. F. (2006). Screening for antimicrobial activity of ten medicinal plants used in Colombian folkloric medicine: A possible alternative in the treatment of non-nosocomial infections. BMC Complementary and Alternative Medicine, 6, Article 2. https://doi.org/10.1186/1472-6882-6-2

Saquib, S. A., AlQahtani, N. A., Ahmad, I., Arora, S., Asif, S. M., Javali, M. A., & Nisar, N. (2021). Synergistic antibacterial activity of herbal extracts with antibiotics on bacteria responsible for periodontitis. The Journal of Infection in Developing Countries, 15(11), Article 11. https://doi.org/10.3855/jidc.14904

Sasmal, S. (n.d.). Preliminary phytochemical screening from different parts of Bauhinia tomentosa L. and Bauhinia malabarica Roxb. (Caesalpiniaceae). Retrieved May 16, 2024, from https://www.academia.edu/7816464/Preliminary_Phytochemical_Screening_from_Different_Parts_of_Bauhinia_tomentosa_L_And_Bauhinia_malabarica_Roxb_Caesalpiniaceae

Saxena, D., Maitra, R., Bormon, R., Czekanska, M., Meiers, J., Titz, A., ... & Chopra, S. (2023). Tackling the outer membrane: Facilitating compound entry into Gram-negative bacterial pathogens. Npj Antimicrobials and Resistance, 1(1), 1–22. https://doi.org/10.1038/s44259-023-00016-1

Sharma, M., Neerajarani, G., Sravan, B., Kumar, A., Senior, & Students, P. (2014). Antioxidant, antifungal, and phytochemical analysis of Bauhinia malabarica: An in-vitro study. African Journal of Health Sciences, 01, 1–13.

Shityakov, S., Bigdelian, E., Hussein, A. A., Hussain, M. B., Tripathi, Y. C., Khan, M. U., & Shariati, M. A. (2019). Phytochemical and pharmacological attributes of piperine: A bioactive ingredient of black pepper. European Journal of Medicinal Chemistry, 176, 149–161. https://doi.org/10.1016/j.ejmech.2019.04.002

Siciliano, V., Passerotto, R. A., Chiuchiarelli, M., Leanza, G. M., & Ojetti, V. (2023). Difficult-to-Treat Pathogens: A Review on the Management of Multidrug-Resistant Staphylococcus epidermidis. Life, 13(5), Article 5. https://doi.org/10.3390/life13051126

Sri Chaithanya, B., & Seedevi, P. (2023). Antibacterial activity of ethanolic extract from Derris scandens against human pathogenic bacteria. E3S Web of Conferences, 399, 09007. https://doi.org/10.1051/e3sconf/202339909007

Srinivasan, R., Selvam, G., Karthik, S., Krishnamurthy, M., Baskaran, R., Karthikeyan, M., Gopi, M., & Govindasamy, C. (2012). In vitro antimicrobial activity of Caesalpinia sappan L. Asian Pacific Journal of Tropical Biomedicine, 2(1), S136–S139. https://doi.org/10.1016/S2221-1691(12)60144-0

Sullivan, G. J., Delgado, N. N., Maharjan, R., & Cain, A. K. (2020). How antibiotics work together: Molecular mechanisms behind combination therapy. Current Opinion in Microbiology, 57, 31–40. https://doi.org/10.1016/j.mib.2020.05.012

Swebocki, T., Barras, A., Kocot, A. M., magdalena.plotka, & rabah.boukherroub. (2023). Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) Assays Using Broth Microdilution Method. DOI: dx.doi.org/10.17504/protocols.io.5qpvo3x6dv4o/v1

The American Society for Microbiology. (2009). Kirby-Bauer disk diffusion susceptibility test protocol | ASM.org. ASM Education. Retrieved from https://asm.org/Protocols/Kirby-Bauer-Disk-Diffusion-Susceptibility-Test-Pro

Thetsana, P. (2019). Microscopic, molecular authentications, and flavonoid contents in selected bauhinia species and pharmacognostic specifications of bauhinia malabarica leaves [Doctor dissertation]. Chulalongkorn University Theses and Dissertations (Chula ETD). https://doi.org/10.58837/CHULA.THE.2019.490

Thetsana, P., Chaowuttikul, C., Palanuvej, C., & Ruangrungsi, N. (2019). Pharmacognostic Specifications, Quercetin and Quercitrin Quantification in Bauhinia malabarica Leaf. Pharmacognosy Journal, 11, 155–160. https://doi.org/10.5530/pj.2019.1.26

Thongdonphum, B., Vanichkul, K, Bunchaleamchai, A, Powthong, P. (2023). In Vitro Antimicrobial Activity of Nymphaea pubescens (Pink Water Lily) Leaf Extracts. Plants (Basel), 12(20), Article 3588. https://doi.org/10.3390/plants12203588

Uddin, T. M., Chakraborty, A. J., Khusro, A., Zidan, B. R. M., Mitra, S., Emran, T. B., ... & Koirala, N. (2021). Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. Journal of Infection and Public Health, 14(12), 1750–1766. https://doi.org/10.1016/j.jiph.2021.10.020

Usman, I., Hussain, M., Imran, A., Afzaal, M., Saeed, F., Javed, M., ... & A. Saewan, S. (2022). Traditional and innovative approaches for the extraction of bioactive compounds. International Journal of Food Properties, 25(1), 1215–1233. https://doi.org/10.1080/10942912.2022.2074030

Valle, D. L., Andrade, J. I., Puzon, J. J. M., Cabrera, E. C., & Rivera, W. L. (2015). Antibacterial activities of ethanol extracts of Philippine medicinal plants against multidrug-resistant bacteria. Asian Pacific Journal of Tropical Biomedicine, 5(7), 532–540. https://doi.org/10.1016/j.apjtb.2015.04.005

Valle, D. L., Cabrera, E. C., Puzon, J. J. M., & Rivera, W. L. (2016). Antimicrobial Activities of Methanol, Ethanol and Supercritical CO2 Extracts of Philippine Piper betle L. on Clinical Isolates of Gram Positive and Gram Negative Bacteria with Transferable Multiple Drug Resistance. PLoS ONE, 11(1), Article e0146349. https://doi.org/10.1371/journal.pone.0146349

Vaou, N., Stavropoulou, E., Voidarou, C. (Chrysa), Tsakris, Z., Rozos, G., Tsigalou, C., & Bezirtzoglou, E. (2022). Interactions between Medical Plant-Derived Bioactive Compounds: Focus on Antimicrobial Combination Effects. Antibiotics, 11(8), Article 1014. https://doi.org/10.3390/antibiotics11081014

Vaou, N., Stavropoulou, E., Voidarou, C., Tsigalou, C., & Bezirtzoglou, E. (2021). Towards Advances in Medicinal Plant Antimicrobial Activity: A Review Study on Challenges and Future Perspectives. Microorganisms, 9(10), 2041. https://doi.org/10.3390/microorganisms9102041

Vij, T., Anil, P. P., Shams, R., Dash, K. K., Kalsi, R., Pandey, V. K., ... & Shaikh, A. M. (2023). A Comprehensive review on bioactive compounds found in Caesalpinia sappan. Molecules, 28(17), Article 6247. https://doi.org/10.3390/molecules28176247

Vuuren, S. van, & Viljoen, A. (2011). Plant-Based Antimicrobial Studies – Methods and Approaches to Study the Interaction between Natural Products. Planta Medica, 77(11), 1168–1182. https://doi.org/10.1055/s-0030-1250736

World Health Organization. (2019). Antimicrobial resistance. Retrieved from https://www.who.int/europe/news-room/fact-sheets/item/antimicrobial-resistance

World Health Organization. (2022). Global antimicrobial resistance and use surveillance system (‎GLASS)‎ report: 2022. Retrieved from https://www.who.int/publications-detail-redirect/9789240062702

World Health Organization. (2023). Antimicrobial resistance. Retrieved from https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance

Yang, D., Wang, T., Long, M., & Li, P. (2020). Quercetin: Its Main Pharmacological Activity and Potential Application in Clinical Medicine. Oxidative Medicine and Cellular Longevity, 2020(1), Article 8825387. https://doi.org/10.1155/2020/8825387

Zarai, Z., Boujelbene, E., Ben Salem, N., Gargouri, Y., & Sayari, A. (2013). Antioxidant and antimicrobial activities of various solvent extracts, piperine and piperic acid from Piper nigrum. LWT - Food Science and Technology, 50(2), 634–641. https://doi.org/10.1016/j.lwt.2012.07.036

Zhang, L.-L., Tian, K., Tang, Z.-H., Chen, X.-J., Bian, Z.-X., Wang, Y.-T., & Lu, J.-J. (2016). Phytochemistry and Pharmacology of Carthamus tinctorius L. The American Journal of Chinese Medicine, 44(02), 197–226. https://doi.org/10.1142/S0192415X16500130

Zhang, Q.-W., Lin, L.-G., & Ye, W.-C. (2018). Techniques for extraction and isolation of natural products: A comprehensive review. Chinese Medicine, 13, Article 20. https://doi.org/10.1186/s13020-018-0177-x

Results of the antimicrobial activity testing of the investigated single plant ethanolic extracts in an agar diffusion assay

Downloads

Published

2024-12-21

How to Cite

Karuncharoenpanich, T., Phetmanee, T., Pradubyat, N., Songsak, T., Jongrungruangchok, S., Madaka, F., Wunnakup, T., & Lakkana, N. (2024). In Vitro Assessment of Antimicrobial Activity and Synergistic Effects of Ethanolic Extracts from Six Medicinal Plants. Journal of Current Science and Technology, 15(1), 85. https://doi.org/10.59796/jcst.V15N1.2025.85

Issue

Section

Research Article

Categories