An LMI approach to output feedback H∞ control design with circular pole constraints for vehicle suspension systems
Keywords:
Output feedback H∞ control, circular pole constraints, vehicle suspension systems, linear matrix inequalityAbstract
This investigative paper is aimed to design a dynamic output feedback H∞ controller with circular pole constraints for vehicle suspension systems. The closed-loop system satisfies both the H∞ norm on the closed-loop transfer function from the disturbance input to the system output and D-stability constraint on the close-loop system matrix. A condition for finding the desired controller is illustrated via a linear matrix inequality (LMI). Additionally, it is shown that this existing condition is equivalent to the feasibility of a certain matrix inequality which is jointly convex in all variables. The proposed controller performance is carried out through simulation. Also, it is compared with passive system and the dynamic output feedback H∞ controller.
References
Chen, H., & Scherer, C. W. (2004). An LMI based model predictive control scheme with guaranteed H∞ performance and its application to active suspension. Proceedings of the American Control Conference. Boston, MA, USA. pp. 1487-1492 vol. 2.
Chen, H., & Guo, K.-H. (2005). Constrained H∞ control of active suspensions: an LMI approach.IEEE Transactions on Control Systems Technology, 13(3), 412-421. DOI: 10.1109/TCST.2004.841661
Chen, B.-C., Shiu, Y.-H., & Hsieh, F.-C. (2011). Sliding-mode control for semi-active suspension with actuator dynamics. Vehicle System Dynamics, 49(1-2), 277-290.. DOI: 10.1080/00423111003602376
Chilali, M., & Gahinet, P. (1996). H∞ design with pole placement constraints. IEEE Transactions on Automatic Control, 41(3), 358-367. DOI: 10.1109/9.486637
Chu, J.-H. (1991). Pole-assignment robustness in a specified disk. System & Control Letters, 16(1), 41-44. DOI: 10.1016/0167-6911(91)90027-C
Du, H., & Zhang, N. (2009). Fuzzy control for nonlinear uncertain electrohydraulic active suspension with input constraint. IEEE Transactions on Fuzzy Systems, 17(2), 343-356. DOI: 10.1109/TFUZZ.2008.2011814
Fialho, I., & Balas, G. J. (2002). Road adaptive active suspension design using linear parameter-varying gain- scheduling. IEEE Transactions on Control Systems Technology, 10(1), 43-54. DOI: 10.1109/87.974337
Garcia, G. & Bernussou, J. (1995). Pole assignment for uncertain systems in a specified disk by state feedback. IEEE Transactions on Automatic Control, 40(1), 184-190. DOI: 10.1109/9.362872
Garcia, G. (1997). Quadratic guaranteed cost and disc pole location control for discrete-time uncertain systems. IEE Proceedings - Control Theory Applications, 144(6), 545-548. DOI: 10.1049/ip-cta:19971542
Haddad, W. M., & Bernstein, D. S. (1992). Controller design with regional pole constraints. IEEE Transactions on Automatic Control, 37(1), 54-69. DOI: 10.1109/9.109638
Hrovat, D. (1997). Survey of advanced suspension developments and related optimal control applications. Automatica, 33(10), 1781-1817. DOI: 10.1016/S0005-1098(97)00101-5
Kanchanaharuthai, A., & Ngamsom, P. (2005). Robust H∞ load-frequency control for interconnected power systems with D-stability constraints via LMI approach. Proceedings of the 2005 American Control Conference, pp. 4387-4392 Vol.6. DOI: 10.1109/ACC.2005.1470670
Koch, G., & Kloiber, T. (2014). Driving state adaptive control of an active vehicle suspension system. IEEE Transactions on Control Systems Technology, 22(1), 44-57. DOI: 10.1109/TCST.2013.2240455
Li, H., Liu, H., Hand, S. & Hilton, C. (2013). Design of robust H∞ controller for a half-vehicle active suspension with input delay. International Journal of Systems Science, 44(4), 625-640. DOI: 10.1080/002077221.2011.617895
Li, H., Jing, X., & Karimi, H. R. (2014). Output-feedback-based H∞ control for vehicle suspension systems with control delay. IEEE Transactions on Industrial electronics, 61(1), 436-446. DOI: 10.1109/TIE.2013.2242418
Prabakar, R. S., Sujatha, C., & Narayanan, S. (2013). Response of a quarter car model with optimal magnetorheological damper parameters. Journal of Sound and Vibration, 332(9), 2191-2206. DOI:10.1016//j.jsv.2012.08.021
Robio-Masegu, J., Palocios-Quinonero, F., Rossell, J. M., & Karimi, H. R. (2013). Static output-feedback control for vehicle suspension: a single-step linear matrix inequality approach. Mathematical Problems in Engineering, 2013, Article ID 907056, 12 pages.
Scherer, C., Gahinet, P., & Chilali, M. (1997). Multi-objective output feedback control via LMI approach optimization. IEEE Transactions on Automatic Control, 42(7), 896-911. DOI: 10.1109/9.599969
Wang, Z. (1998). Robust H∞ state feedback control with regional pole constraints: an algebraic Riccati equation approach. Journal of Dynamic Systems, Measurement, and Control, 120(2), 289-292. DOI: 10.1115/1.2802422
Wang, Z., Zeng, H., Ho, D. W. C, & Unbehauen, H. (2002). Multi-objective control of a four-link flexible manipulator: a robust H∞ approach. IEEE Transactions on Control Systems Technology, 10(6), 866-875. DOI: 10.1109/TCST.2002.804132
Xiao, L., & Zhu, Y. (2014). Passivity-based integral sliding mode active suspension control. In Proceedings of the 19th International Federation of Automatic Control World Congress, Cape Town, South Africa. August 24-29, 2014, pp. 5205-5210.
Yedavalli, R. K., & Liu, Y. 1995). H∞ control with regional stability constraints. Automatica, 31(4), 611-615. DOI: 10.1016/0005-1098(95)98491-N
Yu, L., Chen, G., & Nan, Y. (2002). Design of output feedback guaranteed cost controller with disk closed-loop pole constraints for uncertain discrete-time system. Proc. 15th Triennial World Congress.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.