An LMI approach to output feedback H∞ control design with circular pole constraints for vehicle suspension systems

Authors

  • Tongchit Suthisripok Department of Automotive Engineering, College of Engineering, Rangsit University, Patumthani 12000, Thailand
  • Chanwit Wongrattanapornkul Department of Automotive Engineering, College of Engineering, Rangsit University, Patumthani 12000, Thailand
  • Somchai Poonyaniran Department of Electrical Engineering, College of Engineering, Rangsit University, Patumthani 12000, Thailand
  • Adirak Kanchanaharuthai Department of Electrical Engineering, College of Engineering, Rangsit University, Patumthani 12000, Thailand

Keywords:

Output feedback H∞ control, circular pole constraints, vehicle suspension systems, linear matrix inequality

Abstract

This investigative paper is aimed to design a dynamic output feedback Hcontroller with circular pole constraints for vehicle suspension systems.  The closed-loop system satisfies both the H norm on the closed-loop transfer function from the disturbance input to the system output and D-stability constraint on the close-loop system matrix.  A condition for finding the desired controller is illustrated via a linear matrix inequality (LMI).  Additionally, it is shown that this existing condition is equivalent to the feasibility of a certain matrix inequality which is jointly convex in all variables. The proposed controller performance is carried out through simulation. Also, it is compared with passive system and the dynamic output feedback Hcontroller.

References

Chen, H., & Scherer, C. W. (2004). An LMI based model predictive control scheme with guaranteed H∞ performance and its application to active suspension. Proceedings of the American Control Conference. Boston, MA, USA. pp. 1487-1492 vol. 2.

Chen, H., & Guo, K.-H. (2005). Constrained H∞ control of active suspensions: an LMI approach.IEEE Transactions on Control Systems Technology, 13(3), 412-421. DOI: 10.1109/TCST.2004.841661

Chen, B.-C., Shiu, Y.-H., & Hsieh, F.-C. (2011). Sliding-mode control for semi-active suspension with actuator dynamics. Vehicle System Dynamics, 49(1-2), 277-290.. DOI: 10.1080/00423111003602376

Chilali, M., & Gahinet, P. (1996). H∞ design with pole placement constraints. IEEE Transactions on Automatic Control, 41(3), 358-367. DOI: 10.1109/9.486637

Chu, J.-H. (1991). Pole-assignment robustness in a specified disk. System & Control Letters, 16(1), 41-44. DOI: 10.1016/0167-6911(91)90027-C

Du, H., & Zhang, N. (2009). Fuzzy control for nonlinear uncertain electrohydraulic active suspension with input constraint. IEEE Transactions on Fuzzy Systems, 17(2), 343-356. DOI: 10.1109/TFUZZ.2008.2011814

Fialho, I., & Balas, G. J. (2002). Road adaptive active suspension design using linear parameter-varying gain- scheduling. IEEE Transactions on Control Systems Technology, 10(1), 43-54. DOI: 10.1109/87.974337

Garcia, G. & Bernussou, J. (1995). Pole assignment for uncertain systems in a specified disk by state feedback. IEEE Transactions on Automatic Control, 40(1), 184-190. DOI: 10.1109/9.362872

Garcia, G. (1997). Quadratic guaranteed cost and disc pole location control for discrete-time uncertain systems. IEE Proceedings - Control Theory Applications, 144(6), 545-548. DOI: 10.1049/ip-cta:19971542

Haddad, W. M., & Bernstein, D. S. (1992). Controller design with regional pole constraints. IEEE Transactions on Automatic Control, 37(1), 54-69. DOI: 10.1109/9.109638

Hrovat, D. (1997). Survey of advanced suspension developments and related optimal control applications. Automatica, 33(10), 1781-1817. DOI: 10.1016/S0005-1098(97)00101-5

Kanchanaharuthai, A., & Ngamsom, P. (2005). Robust H∞ load-frequency control for interconnected power systems with D-stability constraints via LMI approach. Proceedings of the 2005 American Control Conference, pp. 4387-4392 Vol.6. DOI: 10.1109/ACC.2005.1470670

Koch, G., & Kloiber, T. (2014). Driving state adaptive control of an active vehicle suspension system. IEEE Transactions on Control Systems Technology, 22(1), 44-57. DOI: 10.1109/TCST.2013.2240455

Li, H., Liu, H., Hand, S. & Hilton, C. (2013). Design of robust H∞ controller for a half-vehicle active suspension with input delay. International Journal of Systems Science, 44(4), 625-640. DOI: 10.1080/002077221.2011.617895

Li, H., Jing, X., & Karimi, H. R. (2014). Output-feedback-based H∞ control for vehicle suspension systems with control delay. IEEE Transactions on Industrial electronics, 61(1), 436-446. DOI: 10.1109/TIE.2013.2242418

Prabakar, R. S., Sujatha, C., & Narayanan, S. (2013). Response of a quarter car model with optimal magnetorheological damper parameters. Journal of Sound and Vibration, 332(9), 2191-2206. DOI:10.1016//j.jsv.2012.08.021

Robio-Masegu, J., Palocios-Quinonero, F., Rossell, J. M., & Karimi, H. R. (2013). Static output-feedback control for vehicle suspension: a single-step linear matrix inequality approach. Mathematical Problems in Engineering, 2013, Article ID 907056, 12 pages.

Scherer, C., Gahinet, P., & Chilali, M. (1997). Multi-objective output feedback control via LMI approach optimization. IEEE Transactions on Automatic Control, 42(7), 896-911. DOI: 10.1109/9.599969

Wang, Z. (1998). Robust H∞ state feedback control with regional pole constraints: an algebraic Riccati equation approach. Journal of Dynamic Systems, Measurement, and Control, 120(2), 289-292. DOI: 10.1115/1.2802422

Wang, Z., Zeng, H., Ho, D. W. C, & Unbehauen, H. (2002). Multi-objective control of a four-link flexible manipulator: a robust H∞ approach. IEEE Transactions on Control Systems Technology, 10(6), 866-875. DOI: 10.1109/TCST.2002.804132

Xiao, L., & Zhu, Y. (2014). Passivity-based integral sliding mode active suspension control. In Proceedings of the 19th International Federation of Automatic Control World Congress, Cape Town, South Africa. August 24-29, 2014, pp. 5205-5210.

Yedavalli, R. K., & Liu, Y. 1995). H∞ control with regional stability constraints. Automatica, 31(4), 611-615. DOI: 10.1016/0005-1098(95)98491-N

Yu, L., Chen, G., & Nan, Y. (2002). Design of output feedback guaranteed cost controller with disk closed-loop pole constraints for uncertain discrete-time system. Proc. 15th Triennial World Congress.

Downloads

Published

2023-02-18

How to Cite

Tongchit Suthisripok, Chanwit Wongrattanapornkul, Somchai Poonyaniran, & Adirak Kanchanaharuthai. (2023). An LMI approach to output feedback H∞ control design with circular pole constraints for vehicle suspension systems. Journal of Current Science and Technology, 6(1), 23–31. Retrieved from https://ph04.tci-thaijo.org/index.php/JCST/article/view/510

Issue

Section

Research Article