Quantitative Thin Layer Chromatography Analysis, Antioxidant, and Anti-Inflammatory Activities of Polyherbal Formulation (Ammarit-Osot) Extracts
DOI:
https://doi.org/10.59796/jcst.V14N3.2024.65Keywords:
Ammarit-Osot, TLC, Piperine, Antioxidant, Anti-inflammatory activityAbstract
This study was carried out to develop a TLC method for quantifying one of bioactive, piperine, from polyherbal formulation (Ammarit-Osot) extracts. The extracts were prepared by different solvents such as methanol (ME) and water (WE). The mobile phase of toluene:acetone:formic acid (7:2:1, v/v/v) was used for separation. The calibration curve showed a good linearity (r2 = 0.9972) in the range of 50 – 500 ng/spot. This assay was assessed by intra-and interday precision (RSD 0.25 – 2.49%), and accuracy (101.05 – 101.56 %). The piperine content was found to be 23.06 ± 0.06 and 0.44 ± 0.03% w/w for ME and WE, respectively. Both ME and WE demonstrated significant activity in DPPH and FRAP assays, indicating their antioxidant potential. The TPC of ME and WE were 53.40 ± 2.21 and 101.18 ± 0.46 (mg GAE/g extract), respectively. The TFC of ME and WE were 43.35 ± 3.94 and 25.31 ± 1.74 (mg catechin/g extract), respectively. In addition, the cytotoxicity of extracts on RAW264.7 was investigated by MTT assay. The ME and piperine showed IC50 with 162.40 ± 7.84 and 115.68 ± 11.96 µg/mL, respectively. While the WE exhibited low cytotoxicity (IC50 > 1,000 µg/mL), the anti-inflammatory activity was assessed by LPS-stimulated NO overproduction. The ME and piperine displayed the ability to inhibit NO production, but WE not inhibited. The results indicated that the different solvent extracts of Ammarit-Osot have the potential to be antioxidant, anti-inflammatory and immune-stimulate agent.
References
Abdel-Daim, M. M., Sayed, A. A., Abdeen, A., Aleya, L., Ali, D., Alkahtane, A. A., ... & Alkahtani, S. (2019). Piperine enhances the antioxidant and anti-inflammatory activities of thymoquinone against microcystin-LR-induced hepatotoxicity and neurotoxicity in mice. Oxidative Medicine and Cellular Longevity, 2019(1), Article 1309175. https://doi.org/10.1155/2019/1309175
Adekoya, A. E., Chusri, S., Beng, E. O. B., & Idown, A. T. (2021). Antioxidant capacities of traditionally formulated Thai herbal decoction and its effect on cell growth using Saccharomyces cerevisiae model. Chiang Mai University Journal of Natural Sciences, 20(1), Article e2021012. https://doi.org/10.12982/CMUJNS.2021.012
Adli, M. A., Idris, L., Mukhtar, S. M., Payaban, M., James, R. J., Halim, H., George, A., & Zohdi, R. M. (2024). Phytochemical assessment, antioxidant activity, and in vitro wound healing potential of Polygonum minus huds. Journal of Current Science and Technology, 14(1), Article 18. https://doi.org/10.59796/jcst.V14N1.2024.18
Ahmad, W., Zaidi, S. M. A., Mujeeb, M., Ansari, S. H., & Ahmad, S. (2014). HPLC and HPTLC methods by design for quantitative characterization and in vitro anti-oxidant activity of polyherbal formulation containing Rheum emodi. Journal of Chromatographic Science, 52(8), 911-918. https://doi.org/ 10.1093/chromsci/bmt123
Baek, S. H., Park, T., Kang, M. G., & Park, D. (2020). Anti-inflammatory activity and ROS regulation effect of sinapaldehyde in LPS-stimulated RAW 264.7 macrophages. Molecules, 25(18), Article 4089. https://doi.org/10.3390/molecules25184089
Bhope, S. G., Nagore, D. H., Kuber, V. V., Gupta, P. K., & Patil, M. J. (2011). Design and development of a stable polyherbal formulation based on the results of compatibility studies. Pharmacognosy Research, 3(2), 122-129. https://doi.org/10.4103/0974-8490.81960
Boonrueng, P., Wasana, P. W. D., Hasriadi, N., Vajragupta, O., Rojsitthisak, P., & Towiwat, P. (2022). Combination of curcumin and piperine synergistically improves pain-like behaviors in mouse models of pain with no potential CNS side effects. Chinese Medicine, 17(1), Article 119. https://doi.org/10.1186/s13020-022-00660-1
Cai, Y. Z., Sun, M., Xing, J., Luo, Q., & Corke, H. (2006). Structure–radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sciences, 78(25), 2872-2888. https://doi.org/10.1016/j.lfs.2005.11.004
Chen, J., Yang, J., Ma, L., Li, J., Shahzad, N., & Kim, C. K. (2020a). Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Scientific Reports,10(1), Article 2611. https://doi.org/10.1038/s41598-020-59451-z
Chen, Y., Zhou, R., He, L., Wang, F., Yang, X., Teng, L., ... & Chen, H. (2020b). Okra polysaccharide-2 plays a vital role on the activation of RAW264. 7 cells by TLR2/4-mediated signal transduction pathways. International Immunopharmacology, 86, Article 106708. https://doi.org/10.1016/j.intimp.2020.106708
Chewchinda, S., Lomarat, P., & Sithisarn, P. (2018). Validated thin-layer chromatography-densitometric method for simultaneous determination of piperine and plumbagin in “Benjakul” Thai polyherbal formulation and its antioxidant activities. The Thai Journal of Pharmaceutical Sciences, 42(1), 45-50. https://doi.org/10.56808/3027-7922.2394
Duan, X., Subbiah, V., Xie, C., Agar, O. T., Barrow, C. J., Dunshea, F. R., & Suleria, H. A. (2023). Evaluation of the antioxidant potential of brown seaweeds extracted by different solvents and characterization of their phenolic compounds by LC–ESI‐QTOF–MS/MS. Journal of Food Science, 88(9), 3737-3757. https://doi.org/10.1111/1750-3841.16720
Duan, Z., Xie, H., Yu, S., Wang, S., & Yang, H. (2022). Piperine Derived from Piper nigrum L. Inhibits LPS-Induced Inflammatory through the MAPK and NF-κB Signalling Pathways in RAW264.7 Cells. Foods, 11(19), Article 2990. https://doi.org/10.3390/foods11192990
Geum, N. G., Eo, H. J., Kim, H. J., Park, G. H., Son, H. J., & Jeong, J. B. (2020). Immune-enhancing activity of Hydrangea macrophylla subsp. serrata leaves through TLR4/ROS-dependent activation of JNK and NF-κB in RAW264. 7 cells and immunosuppressed mice. Journal of Functional Foods, 73, Article 104139. https://doi.org/10.1016/j.jff.2020.104139
Gregersen, N. T., Belza, A., Jensen, M. G., Ritz, C., Bitz, C., Hels, O., ... & Astrup, A. (2013). Acute effects of mustard, horseradish, black pepper and ginger on energy expenditure, appetite, ad libitum energy intake and energy balance in human subjects. British Journal of Nutrition, 109(3), 556-563. https://doi.org/10.1017/S0007114512001201
Gunsuang, S., Jaipakdee, N., Mahakunakorn, P., & Limpongsa, E. (2019). Development of semisolid preparations containing extract of Thai polyherbal recipe for anti-inflammatory effect. International Journal of Applied Pharmaceutics, 11(4), 345-353. https://doi.org/10.22159/ijap.2019v11i4.33902
Han, C., Raksat, A., Atanu, M. S. H., Chang, L. K., Wall, M. M., & Chang, L. C. (2024). Investigation of antimicrobial, antioxidant, and cytotoxic activities of Boesenbergia rotunda rhizome extract. Journal of Current Science and Technology, 14(1), Article 20. https://doi.org/10.59796/jcst.V14N1.2024.20
Herald, T. J., Gadgil, P., & Tilley, M. (2012). High‐throughput micro plate assays for screening flavonoid content and DPPH‐scavenging activity in sorghum bran and flour. Journal of the Science of Food and Agriculture, 92(11), 2326-2331. https://doi.org/10.1002/jsfa.5633
Hong, S. H., Ku, J. M., Kim, H. I., Ahn, C. W., Park, S. H., Seo, H. S., ... & Ko, S. G. (2017). The immune-enhancing activity of Cervus nippon mantchuricus extract (NGE) in RAW264. 7 macrophage cells and immunosuppressed mice. Food Research International, 99, 623-629. https://doi.org/10.1016/j.foodres.2017.06.053
International Conference on the Harmonization of Technical Requirements for Registrationof Pharmaceuticals for Human Use (ICH). (2005). Validation of Analytical Procedures:Text and Methodology Q2 (R1). Retrieved February 20, 2024, from http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/ Q2_R1/Step4/Q2_R1_Guideline.pdf
Ketkomol, P., Songsak, T., Jongrungruangchok, S., Madaka, F., & Pradubyat, N. (2024). The effect of 1'-acetoxychavicol acetate on A549 human non-small cell lung cancer. Journal of Current Science and Technology, 14(2), Article 43. https://doi.org/10.59796/jcst.V14N2.2024.43
Loganayaki, N., Siddhuraju, P., & Manian, S. (2013). Antioxidant activity and free radical scavenging capacity of phenolic extracts from Helicteres isora L. and Ceiba pentandra L. Journal of Food Science and Technology, 50, 687-695. https://doi.org/10.1007/s13197-011-0389-x
Mehmood, M. H., & Gilani, A. H. (2010). Pharmacological basis for the medicinal use of black pepper and piperine in gastrointestinal disorders. Journal of Medicinal Food, 13(5), 1086-1096. https://doi.org/10.1089/jmf.2010.1065
Mgbeahuruike, E. E., Vuorela, H., Yrjönen, T., & Holm, Y. (2018). Optimization of thin-layer chromatography and high-performance liquid chromatographic method for Piper guineense extracts. Natural Product Communications, 13(1), 25-28. https://doi.org/10.1177/1934578X1801300109
Mian, S. S., Alam, M. I., Khan, N. A., & Shuaib, M. (2023). Standardisation of different extracts of detoxified Nux-vomica seeds with its comparative study by TLC and HPTLC. Journal of Herbal Medicine, 42, Article 100792. https://doi.org/10.1016/j.hermed.2023.100792
Muszyński, J., Ziółkowski, B., Kotarski, P., Niegowski, A., Górnicka, B., Bogdańska, M., ... & Siemińska, J. (2016). Gastritis–facts and doubts. Gastroenterology Review/Przegląd Gastroenterologiczny, 11(4), 286-295. https://doi.org/10.5114/pg.2016.57793
Oogarah, P. N., Ramanjooloo, A., Rovisham, J., Doorga, S., Meyepa, C., Wilhelmus, R., & Marie, P. (2020). Assessing antioxidant activity and phenolic content of marine sponges from mauritius waters. International Journal of Pharmacognosy and Phytochemical Research, 12(3), 123-131. https://doi.org/10.25258/phyto.12.3.1
Patel, R. B., Patel, M. R., Bhatt, K. K., & Patel, B. G. (2010). HPTLC method development and validation: quantification of paliperidone in formulations and in vitro release study. Analytical Methods, 2(5), 525-531. https://doi.org/10.1039/B9AY00276F
Patra, K. C., & Kumar, K. J. (2010). A validated HPTLC method for simultaneous analysis of eugenol and piperine in a Siddha formulation. Journal of Planar Chromatography, 23, 293-297. https://doi.org/10.1556/JPC.23.2010.4.11
Pundarikakshudu, K., Sharma, A. S., Bhatt, C. J., & Kanaki, N. S. (2014). Simultaneous quantitation of piperine and piperlongumine in the fruit of Piper longum Linn. by validated high-performance thin-layer chromatography-densitometric method. Journal of Planar Chromatography, 27(5), 362-366. https://doi.org/10.1556/JPC.27.2014.5.6
Qin, B., Yang, K., & Cao, R. (2020). Synthesis and antioxidative activity of piperine derivatives containing phenolic hydroxyl. Journal of Chemistry, 2020(1), Article 2786359. https://doi.org/10.1155/2020/2786359
Qin, J., Wang, H. Y., Zhuang, D., Meng, F. C., Zhang, X., Huang, H., & Lv, G. P. (2019). Structural characterization and immunoregulatory activity of two polysaccharides from the rhizomes of Atractylodes lancea (Thunb.) DC. International Journal of Biological Macromolecules, 136, 341-351. https://doi.org/10.1016/j.ijbiomac.2019.06.088
Rajopadhye, A. A., Namjoshi, T. P., & Upadhye, A. S. (2012). Rapid validated HPTLC method for estimation of piperine and piperlongumine in root of Piper longum extract and its commercial formulation. Revista Brasileira de Farmacognosia, 22, 1355-1361. https://doi.org/10.1590/S0102-695X2012005000113
Ramesh, B., Sarma, V. U. M., Kumar, K., Babu, K. S., & Devi, P. S. (2015). Simultaneous determination of six marker compounds in Piper nigrum L. and species comparison study using high-performance thin-layer chromatography–mass Spectrometry. Journal of Planar Chromatography, 28(4), 280-286. https://doi.org/10.1556/1006.2015.28.4.3
Sasadara, M., & Wirawan, I. (2021). Effect of extraction solvent on total phenolic content, total flavonoid content, and antioxidant activity of Bulung Sangu (Gracilaria sp.) Seaweed. IOP Conference Series: Earth and Environmental Science, 712, Article 012005. https://doi.org/10.1088/1755-1315/712/1/012005
Seyoum, A., Asres, K., & El-Fiky, F. K. (2006). Structure–radical scavenging activity relationships of flavonoids. Phytochemistry, 67(18), 2058-2070. https://doi.org/10.1016/j.phytochem.2006.07.002
Shalini, K., & Ilango, K. J. P. J. (2021). Preliminary phytochemical studies, GC-MS analysis and in vitro antioxidant activity of selected medicinal plants and its polyherbal formulation. Pharmacognosy Journal, 13(3), 648-659. https://doi.org/10.5530/pj.2021.13.83
Sharma, T., Khurana, R. K., Borges, B., Kaur, R., Katare, O. P., & Singh, B. (2021). An HPTLC densitometric method for simultaneous quantification of sorafenib tosylate and chrysin: Analytical method development, validation and applications. Microchemical Journal, 162, Article 105821. https://doi.org/10.1016/j.microc.2020.105821
Shivatare, R. S., Nagore, D. H., & Nipanikar, S. U. (2013). HPTLC’an important tool in standardization of herbal medical product: A review. Journal of Innovative Sciences, 2(6), 1086-1096.
Sobhani, Z., Emami, S. A., & Rajabi, O. (2020). Comparison between HPLC and HPTLC densitometry for the determination of spinosin from Ziziphus jujuba Mill. fruit extracts. Journal of Liquid Chromatography & Related Technologies, 43(1-2), 10-16. https://doi.org/10.1080/10826076.2019.1576140
Srithat, D., Pranakhon, R., Khamluerit, P., Tongkasee, P., & Sansupa, K. (2022). The service of medicinal recipes containing cannabis mixed in Thai traditional medical cannabis clinics of Rajamangala University of Technology Isan Sakon Nakhon Campus. Journal of Cannabis, Hemp and Herbs, 1(1), 1-8.
Tabarsa, M., You, S., Yelithao, K., Palanisamy, S., Prabhu, N. M., & Nan, M. (2020). Isolation, structural elucidation and immuno-stimulatory properties of polysaccharides from Cuminum cyminum. Carbohydrate Polymers, 230, Article 115636. https://doi.org/10.1016/j.carbpol.2019.115636
Thatipelli, S., Shanmugam, M., Ramachandran, S., & Pushparathinam, G. (2023). Screening and validated semi-quantification high-performance thin layer chromatography method development for lupeol, lupeol acetate, β-sitosterol, ρ-coumaric acid and proto-catechuic acid in the root extracts of Hemidesmus indicus (L.) R. Br. & Decalepis hamiltonii Wight & Arn. Journal of Applied Research on Medicinal and Aromatic Plants, 36, Article 100510. https://doi.org/10.1016/j.jarmap.2023.100510
Urakova, I. N., Pozharitskaya, O. N., Shikov, A. N., Kosman, V. M., & Makarov, V. G. (2008). Comparison of high performance TLC and HPLC for separation and quantification of chlorogenic acid in green coffee bean extracts. Journal of Separation Science, 31(2), 237-241. https://doi.org/10.1002/jssc.200700472
Wang, D., Zhang, L., Huang, J., Himabindu, K., Tewari, D., Horbańczuk, J. O., ... & Atanasov, A. G. (2021). Cardiovascular protective effect of black pepper (Piper nigrum L.) and its major bioactive constituent piperine. Trends in Food Science and Technology, 117, 34-45. https://doi.org/10.1016/j.tifs.2020.11.024
Wetwitayaklung, P., Kitcharoen, N., & Sotanaphun, U. (2010). TLC image analysis for determination of the piperine content of the traditional medicinal preparations of Bhutan. Acta Chromatographica, 22(2), 227-236. https://doi.org/10.1556/achrom.22.2010.2.6
World Health Organization. (2000). General guidelines for methodologies on research and evaluation of traditional medicine. Retrieved December 15, 2023, https://www.who.int/publications/i/item/9789241506090
Ying, X., Yu, K., Chen, X., Chen, H., Hong, J., Cheng, S., & Peng, L. (2013). Piperine inhibits LPS induced expression of inflammatory mediators in RAW 264.7 cells. Cellular Immunology, 285(1-2), 49-54. https://doi.org/10.1016/j.cellimm.2013.09.001
Zarai, Z., Boujelbene, E., Salem, N. B., Gargouri, Y., & Sayari, A. (2013). Antioxidant and antimicrobial activities of various solvent extracts, piperine and piperic acid from Piper nigrum. Lwt-Food Science and Technology, 50(2), 634-641. https://doi.org/10.1016/j.lwt.2012.07.036
Zhang, K., Wu, W., & Tian, S. (2020). Comparative study on the determination of ethyl p-methoxycinnamate in Kaempferia galanga rhizome by HPTLCS and HPLC. JPC–Journal of Planar Chromatography–Modern TLC, 33, 51-57. https://doi.org/10.1007/s00764-019-00011-1
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2024 Journal of Current Science and Technology
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.