Copper (II) adsorption property of 1D coordination polymer [Cu2(H2O)(bipy)2(tp)2] (bipy = 2,2'-bipyridine, tp = terepthalate) after acid treatment

Authors

  • Winya Dungkaew Department of Chemistry, Faculty of Science, Mahasarakham University, Kantarawichai, Maha Sarakham 44150, Thailand
  • Suwadee Jiajaroen Department of Chemistry, Faculty of Science, Mahasarakham University, Kantarawichai, Maha Sarakham 44150, Thailand & Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand
  • Chatphorn Theppitak Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand
  • Darunee Sertphon Department of Chemistry, Faculty of Science, Rangsit University, Pathum Thani 12000, Thailand
  • Kittipong Chainok Materials and Textile Technology, Faculty of Science and Technology,Thammasat University, Pathum Thani 12121, Thailand

Keywords:

after acid treatment, coordination polymer, Copper (II), Cu2 adsorption, single crystal X-ray diffraction, terephthalic acid

Abstract

A deep-blue crystal of terepthalato-bridged copper (II) coordination polymer (CP), [Cu2(H2O)(bipy)2(tp)2] (1) was synthesized using hydrothermal reactions of Cu(OAc)2·H2O, terephthalic acid (H2tp), 2,2¢-bipyridine (bipy), at pH ~8.45 in NH4OH.  Single crystal X-ray diffraction analysis at room temperature revealed that complex 1 crystallizes in monoclinic space group P21/c with unit cell parameter a = 12.19720(10) Å, b = 14.78360(10) Å, c = 11.25080(10) Å, b  = 91.5460(10)°, V = 2027.99(3) Å3, and Z = 4.  Complex 1 shows a one-dimensional zigzag chain along the [001] direction constructed by the tp2− ligand linked to adjacent Cu2+ ions through the carboxylate groups, while the bipy acts as bidentate chelating ligand.  Classical O-H∙∙∙O hydrogen bonds are observed. The synthesized product was acid-treated via immersion in 1%v/v HNO3, and within minute white crystals with retained morphology was obtained.  Subsequently, the white acid-treated crystals were tested for their Cu2+ adsorption.  Cu2+ adsorption of the white acid-treated crystals was fast and high.  Adsorption as high as 214 mg Cu2+/g adsorbent can be obtained from material prepared from acid treated of 1D polymeric chain.

References

Allendorf, M. D., Bauer, C. A., Bhakta, R. K., & Houk, R. J. T. (2009). Luminescent metal–organic frameworks. Chemical Society Reviews, 38, 1330-1352. DOI: 10.1039/B802352M

An, J., Geib, S. J., Rosi, & N. L. (2010). High and Selective CO2 Uptake in a Cobalt Adeninate Metal−Organic Framework Exhibiting Pyrimidine- and Amino-Decorated Pores. Journal of the American Chemical Society, 132, 38-39. DOI: 10.1021/ja909169x

An, J., & Rosi, N. L. (2010). Tuning MOF CO2 Adsorption Properties via Cation Exchange. Journal of the American Chemical Society, 132, 5578-5779. DOI: 10.1021/ja1012992

Aydın, H., Buluta, Y., & Yerlikaya, C. (2007). Removal of copper (II) from aqueous solution by adsorption onto low-cost adsorbents. Journal of Environmental Management, 87, 37-45. DOI: 10.1016/j.jenvman.2007.01.005

Babel, S., & Kurniawan, T. A. (2003). Low-cost adsorbents for heavy metals uptake from contaminated water: a review. Journal of Hazardous Materials, 97, 219-243. DOI: 10.1016/S0304-3894(02)00263-7

Badruddoza, A. Z. M., Tay, A. S. H., Tan, P. Y., Hidajat, K., & Uddin, M. S. (2011). Carboxymethyl-β-cyclodextrin conjugated magnetic nanoparticles as nano-adsorbents for removal of copper ions: synthesis and adsorption studies. Journal of Hazardous Materials, 185, 1177-1186. DOI: 10.1016/j.jhazmat.2010.10.029

Bae, Y.-S., Spokoyny, A. M., Farha, O. K., Snurr, R. Q., Hupp, J.T., & Mirkin, C. A. (2010). Separation of gas mixtures using Co(II) carborane-based porous coordination polymers. Chemical Communications, 46, 3478-3480. DOI: 10.1039/B927499E

Batten, S, R., Champness, N. R., Chen, X. M., Garcia-Martinez, J., Kitagawa, S., Ohrstrom, L., . . . Reedijk, J. (2013). Terminology of metal-organic frameworks and coordination polymers. Pure and Applied Chemistry, 85(8), 1715−1724. DOI: 10.1351/PAC-REC-12-11-20

Bruker (2014). APEX2, SADABS and SAINT. Madison, Wisconsin, USA: Bruker AXS Inc.

Carn-Sanchez, A., Imaz, I., Stylianou, K. C., & Maspoch, D. (2014). Metal–Organic Frameworks: From Molecules/Metal Ions to Crystals to Superstructures. Chemistry - A European Journal, 20, 5192-5201. DOI: 10.1002/chem.201304529

Christian, K., Alexander, K., & Mir, W. H. (2000). Bipyridine: the most widely used ligand. A review of molecules comprising at least two 2,2'-bipyridine units. Chemical Reviews, 100, 3353-3590. DOI: 10.1021/cr990376z

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., & Puschmann, H. (2009). OLEX2: a complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42, 339-341. DOI: 10.1107/S0021889808042726

Erdem, O., Saylan, Y., Andaç, M., & Denizli, A. (2018). Molecularly Imprinted Polymers for Removal of Metal Ions: An Alternative Treatment Method. Biomimetics, 3(4), 38. DOI: 10.3390/biomimetics3040038

Farha, O. K., Shultz, A. M., Sarjeant, A. A., Nguyen, S. T., & Hupp, J. T. (2011). Active-Site-Accessible, Porphyrinic Metal−Organic Framework Materials. Journal of the American Chemical Society, 133, 5652-5655. DOI: 10.1021/ja111042f

Foo, M. L., Matsuda, R., & Kitagawa, S. (2014). Functional Hybrid Porous Coordination. Chemistry of materials, 26, 310-322. DOI: 10.1021/cm402136z

Han, Y., Zheng, H., Liu, K., Wang, H., Huang, H., Xie, L. H., Wang, L., & Li, J. R. (2016). In-Situ Ligand Formation-Driven Preparation of a Heterometallic Metal–Organic Framework for Highly Selective Separation of Light Hydrocarbons and Efficient Mercury Adsorption. ACS Applied Materials & Interfaces, 8, 23331-23337. DOI: 10.1021/acsami.6b08397

Horcajada, P., Serre, C., Vallet-Regí, M., Sebban, M., Taulelle, F., & Ferey, G. (2006). Metal-organic frameworks as efficient materials for drug delivery. Angewandte Chemie, International Edition, 45, 5974-5978. DOI: 10.1002/anie.200601878

Hu, Y. H., & Zhang, L. (2010). Hydrogen storage in metal-organic frameworks. Advanced Materials, 22, E117-130. DOI: 10.1021/cr200274s

Kent, C. A., Mehl, B. P., Ma, L., Papanikolas, J. M., Meyer, T. J., & Lin, W. (2010). Energy Transfer Dynamics in Metal−Organic Frameworks. Journal of the American Chemical Society, 132, 12767-12769. DOI: 10.1021/ja102804s

Kitagawa, S., Kitaura, R., & Noro, S. (2004). Functional porous coordination polymers. Angewandte Chemie (International ed. in English), 43(18), 2334-2375. DOI: 10.1002/anie.200300610

Kitagawa, S., & Matsuda, R. (2007). Chemistry of coordination space of porous coordination polymers. Coordination Chemistry Reviews, 251, 2490-2509. DOI: 10.1016/j.ccr.2007.07.009

Koo, J., Hwang, I. C., Yu, X., Saha, S., Kim, Y., & Kim, K. (2017). Hollowing out MOFs: hierarchical micro- and mesoporous MOFs with tailorable porosity via selective acid etching. Chemical Science, 8, 6799-6803. DOI: 10.1039/C7SC02886E

Lee, J., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S. T., & Hupp, J. T. (2009). Metal–organic framework materials as catalysts. Chemical Society Reviews, 38, 1450-1459. DOI: 10.1039/B807080F

Lee, C. Y., Farha, O. K., Hong, B. J., Sarjeant, A. A., Nguyen, S.T., & Hupp, J. T. (2011). Light-Harvesting Metal–Organic Frameworks (MOFs): Efficient Strut-to-Strut Energy Transfer in Bodipy and Porphyrin-Based MOFs. Journal of the American Chemical Society, 133, 15858-15861. DOI: 10.1021/ja206029a

Li, J.-R., Kuppler, R. J., & Zhou, H.-C. (2009). Selective gas adsorption and separation in metal–organic frameworks. Chemical Society Reviews, 38, 1477-1504. DOI: 10.1039/b802426j

Luo, X., Shen, T., Dng, L., Zhong, W., Luo, J., & Luo, S. (2016). Novel thymine-functionalized MIL-101 prepared by post-synthesis and enhanced removal of Hg(2+) from water. Journal of Hazardous Materials, 306, 313-322. DOI: 10.1016/j.jhazmat.2015.12.034

Ma, L., Abney, C., & Lin, W. (2009). Enantioselective catalysis with homochiral metal–organic frameworks. Chemical Society Reviews, 38, 1248-1256. DOI: 10.1039/B807083K

Murray, L. J., Dinca, M., & Long, J. R. (2009). Hydrogen storage in metal-organic frameworks. Chemical Society Reviews, 38, 1294-1314. DOI: 10.1021/cr200274s

Musso, T. B., Parolo, M. E., Pettinari, G., & Francisca, F. M. (2014). Cu(II) and Zn(II) adsorption capacity of three different clay liner materials. Journal of Environmental Management, 146, 50-58. DOI: 10.1016/j.jenvman.2014.07.026

Noro, S., Kitagawa, S., Akutagawa, T., & Nakamura, T. (2009). Coordination polymers constructed from transition metal ions and organic N-containing heterocyclic ligands: Crystal structures and microporous properties. Progress in Polymer Science, 34(3), 240-279. DOI: 10.1016/j.progpolymsci.2008.09.002

Pietrelli, L., Palombo, M., Taresco, V., Crisante, F., Francolini, I., & Piozzi, A. (2017). Copper (II) adsorption capacity of a novel hydroxytyrosol-based polyacrylate. Polymer Bulletin, 74(4), 1175-1191. DOI: 10.1007/s00289-016-1770-8

Piscopo, C. G., Polyzoidis, A., Schwarzer, & M., Loebbecke, S. (2015). Stability of UiO-66 under acidic treatment: Opportunities and limitations for post-synthetic modifications. Microporous Mesoporous Mater, 208, 30-35. DOI: 10.1016/j.micromeso.2015.01.032

Rocca, J. D., Liu, D., & Lin, W. (2011). Nanoscale Metal–Organic Frameworks for Biomedical Imaging and Drug Delivery. Accounts of Chemical Research, 44, 957-968. DOI: 10.1021/ar200028a

Rowsell, J. L. C., & Yaghi, O. M. (2004). Metal–organic frameworks: a new class of porous materials. Microporous and Mesoporous Materials, 73, 3-14. DOI: 10.1016/j.micromeso.2004.03.034

Sculley, J., Yuan, D., & Zhou, H.-C. (2011). The current status of hydrogen storage in metal–organic frameworks—updated. Environmental Engineering Science, 4, 2721-2735. DOI: 10.1039/C1EE01240A

Sheldrick, G. M. (2015a). SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallographica, Section A: Foundations of Crystallography, A71, 3-8. DOI: 10.1107/S2053273314026370

Sheldrick, G. M. (2015b). Crystal structure refinement with SHELXL. Acta Crystallographica, Section C: Crystal Structure Communications, C71, 3-8. DOI: 10.1107/S2053229614024218

Tellez, C.A., Hollauer, E., Mondragon, M., & Castano, V.M. (2001). Fourier transform infrared and Raman spectra, vibrational assignment and ab initio calculations of terephthalic acid and related compounds. Spectrochimica Acta, Part A: Molecular Spectroscopy, 57, 993-1007. DOI: 10.1016/S1386-1425(00)00428-5

Wan Ngah, W. S., & Hanafiah, M. A. (2008). Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review. Bioresource Technology, 99, 3935-3948. DOI: 10.1016/j.biortech.2007.06.011

Zhong, D. C., Ji-Hua, D., Xu-Zhong, L., Hui-Jin, L., Jin-Lian, Z., Ke-Jun, W., & Tong-Bu, L. (2012). Two Cadmium-Cluster-Based Metal–Organic Frameworks with Mixed Ligands of 1,2,3-Benzenetriazole (HBTA) and 1,4-Benzenedicarboxylic acid (H2BDC). Crystal Growth & Design, 12, 1992-1998. DOI: 10.1021/cg2016963

Downloads

Published

2023-02-16

How to Cite

Winya Dungkaew, Suwadee Jiajaroen, Chatphorn Theppitak, Darunee Sertphon, & Kittipong Chainok. (2023). Copper (II) adsorption property of 1D coordination polymer [Cu2(H2O)(bipy)2(tp)2] (bipy = 2,2’-bipyridine, tp = terepthalate) after acid treatment. Journal of Current Science and Technology, 9(1), 29–39. Retrieved from https://ph04.tci-thaijo.org/index.php/JCST/article/view/455

Issue

Section

Research Article