Optimal Design of a Bandpass Cavity Filter with WR229 Input/Output by Integrating the Coupling Matrix Technique with the Trust-Region Framework

Authors

  • Hoang Anh Dang Faculty of Electrical and Electronic Engineering, Hanoi Open University (HOU), Hanoi, Vietnam
  • Van son nguyen Faculty of Electrical and Electronic Engineering, Hanoi Open University (HOU), Hanoi, Vietnam
  • Van Dung Tran Institute for Technology Development Media and Community Assistance (IMC), Hanoi, Vietnam
  • Xuan Loi Dai Military Institute of Science and Technology, Hanoi, Vietnam
  • Trong Nghia Hoang Institute for Technology Development Media and Community Assistance (IMC), Hanoi, Vietnam
  • Thi Hanh Quach Faculty of Electrical and Electronic Engineering, Hanoi Open University (HOU), Hanoi, Vietnam
  • Phuong Nhung Do Faculty of Electrical and Electronic Engineering, Hanoi Open University (HOU), Hanoi, Vietnam
  • Thi Phi Doan Nguyen Faculty of Electrical and Electronic Engineering, Hanoi Open University (HOU), Hanoi, Vietnam

DOI:

https://doi.org/10.59796/jcst.V14N3.2024.73

Keywords:

Bandpass Filter, Coupling Matrix, 5G, Optimization, Waveguide, Cavity Resonator

Abstract

This study introduces a bandpass waveguide cavity filter designed for the C-band, centered at 3925 MHz. The design employs an efficient method that integrates two techniques: coupling matrix synthesis and the Trust-Region Framework algorithm for optimization. This combined approach provides a good balance between model simplicity and efficiency while maintaining the robustness and accuracy of the designed filter. Simulation results indicate that the filter achieves a return loss of |S11| ≤ -20 dB and an insertion loss of |S21| ≥ -0.05 dB. Additionally, the filter demonstrates a rejection level of -50.6 dB at 3000 MHz and -21.9 dB at 5000 MHz. The optimized filter’s dimensions in the simulation are 140 × 58.17 × 29.21 mm.

References

AbuHussain, M., & Hasar, U. C. (2020). Design of X-bandpass waveguide Chebyshev filter based on CSRR metamaterial for telecommunication systems. Electronics, 9(1), Article 101. https://doi.org/10.3390/electronics9010101

Basavarajappa, G., & Mansour, R. R. (2018). Design methodology of a tunable waveguide filter with a constant absolute bandwidth using a single tuning element. IEEE Transactions on Microwave Theory Techniques, 66(12), 5632-5639. https://doi.org/10.1109/TMTT.2018.2873383

Blanchet, J., Cartis, C., Menickelly, M., & Scheinberg, K. (2019). Convergence rate analysis of a stochastic trust-region method via supermartingales. INFORMS Journal on Optimization, 1(2), 92-119. https://doi.org/10.1287/ijoo.2019.0016

Brumos, M., Boria, V. E., Guglielmi, M., & Cogollos, S. (2014, October 06–09). Correction of manufacturing deviations in circular-waveguide dual-mode filters using aggressive space mapping [Conference presentation]. 2014 44th European Microwave Conference, Rome, Italy. https://doi.org/10.1109/EuMC.2014.6986511

Cristal, E. G. (1964). Coupled circular cylindrical rods between parallel ground planes. IEEE transactions on microwave theory techniques, 12(4), 428-439. https://doi.org/10.1109/TMTT.1964.1125843

DeMartino, C. (2018). How port tuning makes filter design more efficient. Microwaves RF, 57(4), 81-85.

Diouane, Y., Picheny, V., Riche, R. L., & Perrotolo, A. S. D. (2023). TREGO: a trust-region framework for efficient global optimization. Journal of Global Optimization, 86(1), 1-23. https://doi.org/10.1007/s10898-022-01245-w

Getsinger, W. J. (1962). Coupled rectangular bars between parallel plates. IRE transactions on microwave theory techniques, 10(1), 65-72. https://doi.org./10.1109/TMTT.1962.1125447

He, Y., Wang, G., Song, X., & Sun, L. (2016). A coupling matrix and admittance function synthesis for mixed topology filters. IEEE Transactions on microwave theory techniques, 64(12), 4444-4454. https://doi.org./10.1109/TMTT.2016.2614666

Hong, J.S. (2011). Microstrip filters for RF/microwave applications. New Jersey, U.S.: John Wiley & Sons. https://doi.org/10.1002/0471221619

Hunter, I. C. (2001). Theory and design of microwave filters (no. 48). Stevenage, U.K.: IET Digital Library. https://doi.org/10.1049/PBEW048E

Levy, R., Snyder, R. V., & Matthaei, G. (2002). Design of microwave filters. IEEE Transactions on Microwave Theory techniques, 50(3), 783-793. https://doi.org/10.1109/22.989962

Melgarejo, J. C., Ossorio, J., San-Blas, A. A., Guglielmi, M., & Boria, V. E. (2022). Space mapping filter design and tuning techniques. International Journal of Microwave Wireless Technologies, 14(3), 387-396. https://doi.org/10.1017/S175907872100146X

Puglia, K. V. (2000). A general design procedure for bandpass filters derived from lowpass prototype elements: Part I. Microwave Journal-Euroglobal Edition, 43(12), 22-38.

Puglia, K. V. (2001). A general design procedure for bandpass filters derived from low pass prototype elements: Part II. Microwave Journal-Euroglobal Edition, 44(1), 114-137.

Regis, R. G. (2016). Trust regions in Kriging-based optimization with expected improvement. Engineering optimization, 48(6), 1037-1059. https://doi.org/10.1080/0305215X.2015.1082350

Swanson, D. (2020). Port tuning a microstrip-folded hairpin filter [application notes]. IEEE Microwave Magazine, 21(4), 18-28. https://doi.org/10.1109/MMM.2019.2963609

Swanson, D. G., & Wenzel, R. J. (2001, May 20–24). Fast analysis and optimization of combline filters using FEM [Conference presentation]. IEEE MTT-S International Microwave Symposium Digest (Cat. No. 01CH37157), Phoenix, AZ, USA. https://doi.org/10.1109/MWSYM.2001.967097

Wolansky, D., & Tkadlec, R. (2011). Coaxial filters optimization using tuning space mapping in CST studio. Radioengineering, 20(1), 289-294.

Wyndrum, R. W. (1965). Microwave filters, impedance-matching networks, and coupling structures. Proceedings of the IEEE, 53(7), 766-766. https://doi.org/10.1109/PROC.1965.4048

Yang, J., Zhang, Y., Zhang, D., Hong, T., Liu, Q., Sun, D., Dong, A., & Lv, S. (2020, June 15–19). Highly selective filter for suppressing interference of 5G signals to C-band satellite receiver [Conference presentation]. International Wireless Communications and Mobile Computing (IWCMC), Limassol, Cyprus. https://doi.org/10.1109/IWCMC48107.2020.9148404

Downloads

Published

2024-09-01

How to Cite

Dang, H. A., son nguyen, V., Tran, V. D., Dai, X. L., Hoang, T. N., Quach, T. H., Do, P. N., & Nguyen, T. P. D. (2024). Optimal Design of a Bandpass Cavity Filter with WR229 Input/Output by Integrating the Coupling Matrix Technique with the Trust-Region Framework. Journal of Current Science and Technology, 14(3), Article 73. https://doi.org/10.59796/jcst.V14N3.2024.73