Total phenolics, flavonoids, antioxidant activity, and allelopathic potential of praxelis

Authors

  • Tamonwan Thepphakhun Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
  • Suphannika Intanon Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand

Keywords:

allelochemicals, Chinese cabbage (Brassica pekinensis L.), lettuce (Lactuca sativa L.), Praxelis clematidea, soil incorporation

Abstract

Praxelis (Praxelis clematidea (Griseb.) is an invasive weed in many crops.  Praxelis extract has been shown to exhibit allelopathic activity inhibiting seed germination and growth of other weed species.  This research aimed to investigate phytochemicals of praxelis, evaluate the allelopathic potential of crude extract, and determine allelopathic longevity in praxelis amended soil.  Praxelis was extracted with methanol, 50% (v/v) aqueous solution.  A series of dilutions of the crude extract were carried out and used in the determination of the phytochemicals.  Chinese cabbage (Brassica pekinensis L.) and lettuce (Lactuca sativa L.) were used as test species in the bioassay of allelopathic studies and allelopathic longevity in praxelis amended soil, respectively.  The results showed that praxelis extracts at higher concentrations had greater levels of phytochemicals including phenolics, flavonoids, and antioxidant activity.  In a bioassay study, the praxelis extracts at 100% completely inhibited growth and germination of Chinese cabbage.  The concentrations of 25% and 50% slightly inhibited Chinese cabbage germination but suppressed root and shoot growth.  Praxelis amended soil reduced lettuce growth compared to untreated control, except 14 days after incubation.  Based on toxicity evaluation, the praxelis allelochemicals in soil could last up to 7 days.  The praxelis extracts exhibited the suppression of germination and growth of tested species.  The results suggest praxelis extracts or praxelis amended soil contained potent allelochemicals which can lead to future use as a weed control option.

References

Abouziena, H. F., & Haggag, W. M. (2016). Weed control in clean agriculture: A review. Planta Daninha, 34(2), 377-392. DOI: 10.1590/S0100-83582016340200019

Alías, J. C., Sosa, T., Escudero, J. C., & Chaves, N. (2006). Autotoxicity against germination and seedling emergence in Cistus ladanifer L. Plant and Soil, 282(1-2), 327-332. DOI: 10.1007/s11104-005-6066-y

Al-Samarai, G. F., Mahdi, W. M., & Al-Hilali, B. M. (2018). Reducing environmental pollution by chemical herbicides using natural plant derivatives-allelopathy effect. Annals of Agricultural and Environmental Medicine, 25(3), 449-452. DOI: 10.26444/aaem/90888

Cheng, F., & Cheng, Z. (2015). Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Frontiers in plant science, 6, 1020. DOI: 10.3389/fpls.2015.01020

Deba, F., Xuan, T. D., Yasuda, M., & Tawata, S. (2007). Herbicidal and fungicidal activities and identification of potential phytotoxins from Bidens pilosa L. var. radiata Scherff. Weed Biology and Management, 7(2), 77-83. DOI: 10.1111/j.1445-6664.2007.00239.x

Eljarrat, E., & Barcelo, D. (2001) Sample handling and analysis of allelochemical compounds in plants. TrAC Trends in Analytical Chemistry, 20(10), 584-590. DOI: 10.1016/S0165-9936(01)00104-2

Fagg, C. W., & Stewart, J. L. (1994). The value of Acacia and Prosopis in arid and semi-arid environments. Journal of Arid Environments, 27(1), 3-25. DOI: 10.1006/jare.1994.1041

Falcão, H. S., Maia, G. L., Bonamin, F., Kushima, H., Moraes, T. M., Hiruma Lima, C. A., Takayama, C., Ferreira, A. L., Souza Brito, A. R., Agra, M. F., Barbosa, F. J. M., & Batista, L. M. (2013). Gastroprotective mechanisms of the chloroform and ethyl acetate phases of Praxelis clematidea (Griseb.) R.M.King & H.Robinson (Asteraceae). Journal of Natural Medicines, 67(3), 480-491. DOI: 10.1007/s11418-012-0705-4

Ferreira, A. G., & Aquila, M. E. A. (2000). Allelopathy: an emerging topic in ecophysiology. Revista Brasileira de Fisiologia Vegetal, 12(1), 175-204.

Inderjit. (2001). Soil environment effects on allelochemical activity. Agronomy Journal. 93(1), 79-84. DOI: 10.2134/agronj2001.93179x

Intanon, S., Reed, R. L., Stevens, J. F., Hulting, A. G., & Mallory-Smith, C. A. (2014). Identification and phytotoxicity of a new glucosinolate breakdown product from Meadowfoam (Limnanthes alba) seed meal. Journal of Agricultural and Food Chemistry, 62(30), 7423-7429. DOI: 10.1021/jf5018687

Khalid, S., Ahmad, T., & Shad, R. A. (2002). Use of allelopathy in agriculture. Asian Journal of Plant Sciences, 1(3), 292-297. DOI: 10.3923/ajps.2002.292.297

King, R. M., & Rob, H. (1970). Praxelis clematidea (Griseb.). Phytologia, 20, 194. International Plant Names Index (IPNI): http://ipni.org/urn:lsid:ipni.org:names:209980-2

Li, Z. H., Wang, Q., Ruan, X., Pan, C. D., & Jiang, D. A. (2010). Phenolics and plant allelopathy. Molecules, 15(12), 8933-8952. DOI: 10.3390/molecules15128933

Maia, G. L., Falcão-Silva, V. S., Aquino, P. G. V., De Araújo-Júnior, J. X., Tavares, J. F., Da Silva, M. S., Rodrigues, L. C., De Siqueira-Júnior, J. P., Barbosa-Filho, J. M. (2011). Flavonoids from Praxelis clematidea RM King and Robinson modulate bacterial drug resistance. Molecules, 16(6), 4828-4835. DOI: 10.3390/molecules16064828

Matthiessen, J. N., & Shackleton, M. A. (2005). Biofumigation: environmental impacts on the biological activity of diverse pure and plant-derived isothiocyanates. Pest Management Science, 61(11), 1043-1051. DOI: 10.1002/ps.1086

Ordonez, A. A. L., Gomez, J. D., Vattuone, M. A., & Isla, M. I. (2006). Antioxidant activities of Sechium edule (Jecq.) Swartz extracts. Food Chemistry, 97(3), 452-458. DOI: 10.1016/j.foodchem.2005.05.024

Patsai, S. (2011). Allelopathic effects of Praxelis clematidea (Griseb.) R.M.King & H.Rob on germination and growth of some crops. Master thesis, M.Ed. (Biology). Srinakharinwirot University, Bangkok, Thailand. 99 p. [in Thai].

Pereira, J. C., Paulino, C., Endres, L., Santana, A. E. G., Pereira, F. R. S., & Souza, R. C. (2019). Allelopathic Potential of Ethanolic Extract and Phytochemical Analysis of Paspalum maritimum Trind. Planta Daninha, 37, 1-12. DOI: 10.1590/S0100-83582019370100053

Plant Protection Research and Development. (2011). Methods for experimental planning and evaluation of herbicides for hazardous material registration. Bangkok, Thailand: The Agricultural Cooperative Federation of Thailand, Limited, Branch No. 4. 100 pp. [in Thai]. ISBN: 978-974-436-805-8. www.co-opthai.com

R Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Accessed: July 10, 2018.

Rafińska, K., Pomastowski, P., Rudnicka, J., Krakowska, A., Maruśka, A., Narkute, M., & Buszewski, B. (2019). Effect of solvent and extraction technique on composition and biological activity of Lepidium sativum extracts. Food Chemistry, 289, 16-25. DOI: 10.1016/j.foodchem.2019.03.025

Rice, E. L. (1984). Allelopathy. 2nd ed. New York, USA: Academic Press. pp. 422.

Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144-158.

Škrovánková, S., Mišurcová, L., & Machů, L. (2012). Antioxidant activity and protecting health effects of common medicinal plants. Advances in food and nutrition research, 67, 75-139. DOI: 10.1016/B978-0-12-394598-3.00003-4

Tan, S., Osman, H., Wong, K., Boey, P., & Padzilah, I. (2009). Antimicrobial and antioxidant activities of Swietenia macrophylla leaf extracts. Asian Journal of Food and Agro-Industry, 2(02), 181-188.

Thepphakhun, T., Phimsri, M., & Intanon, S. (2019). Total phenolic content and allelopathic effect of soil incorporation of Praxelis clematidea on emergence and growth of plants. Khon Kaen Agriculture Journal, 47(Suppl. 1), 73-78. [in Thai]. https://www.cabdirect.org/cabdirect/abstract/20193194040

Xuan, T. D., Tawata, S., Khanh, T. D., & Chung, I. M. (2005). Decomposition of allelopathic plants in soil. Journal of Agronomy and Crop Science, 191(3), 162-171. DOI: 10.1111/j.1439-037X.2005.00170.x

Wang, Z. H., Christie, P., Chen, Q. B., Liu, X. X., Xie, L.L., Bai, C.J., & Li, X. L. (2006). Allelopathic potential and chemical constituents of volatile oil from Praxelis clematidea. Allelopathy Journal, 18(2), 225-235.

Won, O. J., Uddin, M. R., Park, K. W., Pyon, J. Y., & Park, S. U. (2013). Phenolic compounds in sorghum leaf extracts and their effects on weed control. Allelopathy Journal, 31(1), 147-155.

Downloads

Published

2020-03-31

How to Cite

Thepphakhun, T. ., & Intanon, S. . (2020). Total phenolics, flavonoids, antioxidant activity, and allelopathic potential of praxelis. Journal of Current Science and Technology, 10(1), 59–65. Retrieved from https://ph04.tci-thaijo.org/index.php/JCST/article/view/412

Issue

Section

Research Article