A novel approach and analysis for PV firming using grid-tied three-port microinverter

Authors

  • Mahmood Alharbi Department of Electrical Engineering, Taibah University, Medina 42353, Saudi Arabia
  • Issa Batarseh Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, United States

Keywords:

dynamic algorithm, DC/DC converter, DC/AC inverter, energy storage, PV firming, three-port microinverter

Abstract

With the demand increase for electricity, the ever-increasing awareness of environmental issues, coupled with rolling blackouts, the role of renewable energy generation will become even more significant.  In this paper, a novel strategy is proposed that can harvest stable solar power despite of intermittency in solar irradiance, where a panel-level three-port grid-tied PV microinverter system is used instead of the traditional high-power energy storage and management system at the utility scale to implement PV firming.  The microinverter system is composed of a front-end flyback converter and an H-bridge for inverter/rectifier, with battery stack connected to the DC-link.  The proposed PV firming strategy lies in static and dynamic algorithms to generate smooth PV reference power, and the outcomes are implemented then to various control methods to charge/discharge the battery stack so that a stable power generation profile is obtained.  Further, topology, simulation and experimental results are presente.  Real-time PV intermittency and usable capacity data were discussed and analyzed in MATLAB/SIMULINK to validate the PV firming control.  The experimental results verify the proposed PV firming algorithms.

References

Abdelrazek, S., & Kamalasadan, S. (2016a). A weather-based optimal storage management algorithm for PV capacity firming. IEEE Transactions on Industry Applications, 52(6), 5175-5184. DOI: 10.1109/TIA.2016.2598139

Abdelrazek, S. A., & Kamalasadan, S. (2016b). Integrated PV capacity firming and energy time shift battery energy storage management using energy-oriented optimization. IEEE Transactions on Industry Applications, 52(3), 2607-2617. DOI: 10.1109/TIA.2016.2531639

Alam, M. J. E., Muttaqi, K. M., & Sutanto, D. (2013). Mitigation of rooftop solar PV impacts and evening peak support by managing available capacity of distributed energy storage systems. IEEE Transaction on Power Systems, 28(4), 3874-3884. DOI: 10.1109/TPWRS.2013.2259269

Alam, M. J. E., Muttaqi, K. M., & Sutanto, D. (2014a). Mitigation of rapid voltage variations caused by passing clouds in distribution networks with solar PV using energy storage. In 8th International Conference on Electrical and Computer Engineering: Advancing Technology for a Better Tomorrow, ICECE 2014 (pp. 305-308). DOI:10.1109/ICECE.2014.7026821

Alam, M. J. E., Muttaqi, K.M., & Sutanto, D. (2014b). A novel approach for ramp-rate control of solar PV using energy storage to mitigate output fluctuations caused by cloud passing, IEEE Transactions on Energy Conversion, 29(2), 507-518. DOI: 10.1109/TEC.2014.2304951

Alharbi, M., Pise, A., Haibing, H., & Batarseh, I. (2017). A new algorithm for PV firming using three-port micro-converter. In 2017 6th International Conference on Renewable Energy Research and Applications, ICRERA 2017 (pp. 719-722). San Diego, CA: IEEE. DOI; https://doi.org/10.1109/ICRERA.2017.8191154

Alharbi, M., Pise, A., Haibing, H., & Batarseh, I. (2018). A new dynamic PV firming control algorithm using grid-tied three-port micro-converter. In 2018 IEEE Applied Power Electronics Conference and Exposition (APEC) (pp. 3200-3204). San Antonio, TX: IEEE. DOI: 10.1109/apec.2018.8341560

Bird, L., Milligan, M., Lew, D., Bird, L., Milligan, M., & Lew, D. (2013). Integrating variable renewable energy : Challenges and solutions integrating variable renewable energy : Challenges and solutions. National Renewable Energy Laboratory (NREL). https://www.nrel.gov/docs/fy13osti/60451.pdf

Bortolini, M., Gamberi, M., & Graziani, A. (2014). Technical and economic design of photovoltaic and battery energy storage system. Energy Conversion and Management, 86, 81-92. DOI: 10.1016/j.enconman.2014.04.089

Cucchiella, F., Adamo, I. D., & Gastaldi, M. (2016). Photovoltaic energy systems with battery storage for residential areas : An economic analysis international panel on climate change. Journal of Cleaner Production, 131, 460-474. DOI:

Fthenakis, V., Mason, J. E., & Zweibel, K. (2009). The technical , geographical , and economic feasibility for solar energy to supply the energy needs of the US. Energy Policy, 37, 387-399. DOI: 10.1016/j.enpol.2008.08.011

Garrett, D. L., & Jeter, S. M. (1989). A photovoltaic voltage regulation impact investigation technique: Part I - Model development. IEEE Transactions on Energy Conversion, 4(1), 47-53. DOI: 10.1109/60.23149

Han, X., Ji, T., Zhao, Z., & Zhang, H. (2015). Economic evaluation of batteries planning in energy storage power stations for load shifting. Renewable Energy, 78, 643-647. https://doi.org/10.1016/j.renene.2015.01.056

Hund, T. D., Gonzalez, S., & Barrett, K. (2010). Grid-tied PV system energy smoothing. In 2010 35th IEEE Photovoltaic Specialists Conference (pp. 002762-002766). DOI: https://doi.org/10.1109/PVSC.2010.5616799

Jewell, W., & Ramakumar, R. (1987). The effects of moving clouds on electric utilities with dispersed photovoltaic generation. IEEE Transactions on Energy Conversion, EC-2(4), 570-576. DOI: 10.1109/TEC.1987.4765894

Kakimoto, N., Satoh, H., Takayama, S., & Nakamura, K. (2009). Ramp-rate control of photovoltaic generator with electric double-layer capacitor. IEEE Transactions on Energy Conversion, 24(2), 465-473.

Kern, E. C., & Gulachenski, E. M. (1989). Cloud effects on distributed photovoltaic generation: slow transients at the Gardner, Massachusetts photovoltaic experiment. IEEE Transactions on Energy Conversion, 4(2), 184-190. DOI: 10.1109/60.17910

Kinjo, T., Senjyu, T., Urasaki, N., & Fujita, H. (2006). Output levelling of renewable energy by electric double-layer capacitor applied for energy storage system. IEEE Transactions on Energy Conversion, 21(1), 221-227. DOI: 10.1109/TEC.2005.853752

Li, X., Hui, D., & Lai, X. (2013). Battery energy storage station (BESS)-based smoothing control of photovoltaic (PV) and wind power generation fluctuations. IEEE Transactions on Sustainable Energy, 4(2), 464-473. DOI: 10.1109/TSTE.2013.2247428

Monai, T., Takano, I., Nishikawa, H., & Sawada, Y. (2004). A collaborative operation method between new energy-type dispersed power supply and EDLC. IEEE Transactions on Energy Conversion, 19(3), 590-598. DOI: 10.1109/TEC.2004.827714

Rahman, S., & Tam, K. S. S. (1988). A feasibility study of photovoltaic fuel cell hybrid energy system. IEEE Transactions on Energy Conversion, 3(1), 50-55. DOI: 10.1109/60.4199

Solomon, A. A., Faiman, D., & Meron, G. (2012). Appropriate storage for high-penetration grid-connected photovoltaic plants. Energy Policy, 40(C), 335-344. DOI: 10.1016/j.enpol.2011.10.019

Tam, K.-S., Kumar, P., & Foreman, M. (1989). Enhancing the utilization of photovoltaic power generation by superconductive magnetic energy storage. IEEE Transactions on Energy Conversion, 4(3), 314-321. DOI: 10.1109/60.43230

Tesfahunegn, S. G., Ulleberg, Ø., Vie, P. J. S., & Undeland, T. M. (2011). PV fluctuation balancing using hydrogen storage ― a smoothing method for integration of PV generation into the utility grid. Energy Procedia, 12(1876), 1015-1022. DOI: https://doi.org/10.1016/j.egypro.2011.10.133

Traube, J., Lu, F., Maksimovic, D., Mossoba, J., Kromer, M., Faill, P., Casey, L. (2013). Mitigation of solar irradiance intermittency in photovoltaic power systems with integrated electric-vehicle charging functionality. IEEE Transactions on Power Electronics, 28(6), 3058-3067. DOI: 10.1109/TPEL.2012.2217354

Trueblood, C., Coley, S., Key, T., Rogers, L., Ellis, A., Hansen, C., & Philpot, E. (2013). PV measures up for fleet duty: Data from a Tennessee plant are used to illustrate metrics that characterize plant performance. IEEE Power and Energy

Downloads

Published

2020-03-31

How to Cite

Alharbi, M. ., & Batarseh, I. . (2020). A novel approach and analysis for PV firming using grid-tied three-port microinverter. Journal of Current Science and Technology, 10(1), 1–19. Retrieved from https://ph04.tci-thaijo.org/index.php/JCST/article/view/404

Issue

Section

Research Article