Preparation and Analysis of Physicochemical Properties, Antioxidant and Antibacterial Activities of Kombucha Tea Produced from Beijing Bamboo Leaf Tea (Dendrocalamus sp.) and Green Tea
DOI:
https://doi.org/10.59796/jcst.V14N3.2024.58Keywords:
Beijing bamboo leaves, antioxidant, antimicrobial activity, green tea, kombuchaAbstract
Beijing bamboo (Dendrocalamus sp.), belonging to the Poaceae family, has been largely neglected and underutilized, particularly its leaves. This study aims to investigate the physicochemical properties, antioxidant, and antimicrobial activities of Beijing bamboo leaf and Beijing bamboo leaf kombucha. Hot air drying was conducted at temperatures of 60, 65, and 70ºC, with results indicating that 65ºC is the optimal drying temperature for achieving the highest levels of total phenolic compounds, flavonoids, and antioxidant activities. Beijing bamboo leaf tea underwent a 21-day fermentation process with a kombucha consortium comprising yeasts and acetic acid bacteria. The results showed that the changing trends of pH, total acidity, and total soluble solids were similar between kombucha produced from Beijing bamboo leaf tea and green tea. Fermentation notably enhanced the antioxidant activity of the kombucha, as evidenced by DPPH and FRAP assays, which correlated with increases in phenolics and flavonoids. The antimicrobial efficacy was assessed through the agar diffusion method and minimum inhibitory concentration (MIC), revealing that both Beijing bamboo leaf tea and green tea suppressed the growth of pathogenic bacteria, including Salmonella Typhimurium DMST 562, E. coli DMST 4242, Bacillus cereus DMST 5040, Staphylococcus aureus DMST 8840, and Pseudomonas aeruginosa DMST 4739. Notably, kombucha from green tea exhibited superior antimicrobial effects compared to Beijing bamboo leaf tea kombucha. Additionally, fermentation of Beijing bamboo leaf tea resulted in higher counts of yeast, acetic acid bacteria, and lactic acid bacteria throughout the fermentation process than those observed in green tea kombucha. These findings highlight the potential of Beijing bamboo leaves as a valuable resource for developing functional properties in underutilized plant resources, offering promising applications in the food and health industries.
References
Antolak, H., Piechota, D., & Kucharska, A. (2021). Kombucha tea-A double power of bioactive compounds from tea and symbiotic culture of bacteria and yeasts (SCOBY). Antioxidants, 10(10), Article 1541. https://doi.org/10.3390/antiox10101541
AOAC. (2002). Official Methods of Analysis of AOAC International. 17thed. Gaithersburg, USA: Association of Analytical Chemists.
Benzie, I. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239(1), 70-76. https://doi.org/c10.1006/abio.1996.0292
Bhattacharya, D., Bhattacharya, S., Patra, M. M., Chakravorty, S., Sarkar, S., Chakraborty, W., ... & Gachhui, R. (2016). Antibacterial activity of polyphenolic fraction of kombucha against enteric bacterial pathogens. Current Microbiology, 73(6), 885-896. https://doi.org/10.1007/s00284-016-1136-3
Braca, A., De Tommasi, N., Di Bari, L., Pizza, C., Politi, M. & Morelli, I. (2001). Antioxidant principles from Bauhinia tarapotensis. Journal of Natural Products, 64(7), 892-895. https://doi.org/10.1021/np0100845
Cardoso, R. R., Neto, R. O., dos Santos D'Almeida, C. T., do Nascimento, T. P., Pressete, C. G., Azevedo, L., ... & de Barros, F. A. R. (2020). Kombuchas from green and black teas have different phenolic profile, which impacts their antioxidant capacities, antibacterial and antiproliferative activities. Food Research International, 128, Article 108782. https://doi.org/10.1016/j.foodres.2019.108782
Chakravorty, S., Bhattacharya, S., Chatzinotas, A., Chakraborty, W., Bhattacharya, D., & Gachhui, R. (2016). Kombucha tea fermentation: Microbial and biochemical dynamics. International Journal of Food Microbiology, 220, 63-72. https://doi.org/10.1016/j.ijfoodmicro.2015.12.015
Chen, C., & Liu, B. Y. (2000). Changes in major components of tea fungus metabolites during prolonged fermentation. Journal of Applied Microbiology, 89, 834-839. https://doi.org/10.1046/j.1365-2672.2000.01188.x
Chu, S. C., & Chen, C. (2006). Effects of origins and fermentation time on the antioxidant activities of kombucha. Food Chemistry, 98(3), 502-507. https://doi.org/10.1016/j.foodchem.2005.05.080
Coelho, R. M. D., de Almeida, A. L., do Amaral, R. Q. G., da Mota, R. N., & de Sousa, P. H. M. (2020). Kombucha. International Journal of Gastronomy and Food Science, 22, Article 100272. https://doi.org/10.1016/j.ijgfs.2020.100272
Coton, M., Pawtowski, A., Taminiau, B., Burgaud, G., Deniel, F., Coulloumme-Labarthe, L., ... & Coton, E. (2017). Unraveling microbial ecology of industrial-scale Kombucha fermentations by metabarcoding and culture-based methods. FEMS Microbiology Ecology, 93(5), Article fix048. https://doi.org/10.1093/femsec/fix048
de Noronha, M. C., Cardoso, R. R., dos Santos D'Almeida, C. T., do Carmo, M. A. V., Azevedo, L., Maltarollo, V. G., ... & de Barros, F. A. R. (2022). Black tea kombucha: Physicochemical, microbiological and comprehensive phenolic profile changes during fermentation, and antimalarial activity. Food Chemistry, 384, Article 132515. https://doi.org/10.1016/j.foodchem.2022.132515
Deghrigue, M., Chriaa, J., Battikh, H., & Abid, K. (2013). Antiproliferative and antimicrobial activities of kombucha tea. African Journal of Microbiology Research, 7(27), 3466-3470. https://doi.org/10.5897/AJMR12.1230.
Dudonne, S., Vitrac, X., Coutiere, P., Woillez, M., & Merillon, J. M. (2009). Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. Journal of Agricultural and Food Chemistry, 57(5), 1768-1774. https://doi.org/10.1021/jf803011r.
Emiljanowicz, K. E., & Malinowska-Pańczyk, E. (2019). Kombucha from alternative raw materials - The review. Critical Reviews in Food Science and Nutrition, 60(19), 3185-3194. https://doi.org/10.1080/10408398.2019.1679714
Ghasemzadeh, A., & Ghasemzadeh, N. (2011). Flavonoids and phenolic acids: Role and biochemical activity in plants and human. Journal of Medicinal Plants Research, 5(31), 6697-6703. https://doi.org/10.5897/JMPR11.1404
Gong, J., Huang, J., Xiao, G., Chen, F., Lee, B., Ge, Q., ... & Zhang, Y. (2016). Antioxidant capacities of fractions of bamboo shaving extract and their antioxidant components. Molecules, 21(8), Article 996. https://doi.org/10.3390/molecules21080996.
Hossain, M. F., Islam, M. A., & Numan, S. M. (2015). Multipurpose uses of bamboo plants: A review. International Research Journal of Biological Sciences, 4(12), 57-60.
Ismanto, S. D., Rahmi, I. D., & Febrian, A. (2020). The influence of drying temperature on chemical components of herbal tea leaves (Spondiasdulcis soland). IOP Conferences Series: Earth and Environmental Science, 583, Article 012030. https://doi.org/10.1088/1755-1315/583/1/012030
Jakubczyk, K., Kalduńska, J., Kochman, J., & Janda, K. (2020). Chemical profile and antioxidant activity of the kombucha beverage derived from white, green, black and red tea. Antioxidants, 9(5), Article 447. https://doi.org/10.3390/antiox9050447
Kaewkod, T., Bovonsombut, S., & Tragoolpua, Y. (2019). Efficacy of kombucha obtained from green, oolong, and black teas on inhibition of pathogenic bacteria, antioxidation, and toxicity on colorectal cancer cell line. Microorganisms, 7(12), Article 700. https://doi.org/10.3390/microorganisms 7120700
Lam, K. Y., Ling, A. P., Koh, R. Y., Wong, Y. P., & Say, Y. H. (2016). A review on medicinal properties of orientin. Advances in Pharmacological Sciences. 2016(1), Article 4104595. https://doi.org/10.1155/2016/4104595
Li, N., Taylor, L. S., Ferruzzi, M. G. & Mauer, L. J. (2012). Kinetic study of catechin stability: effects of pH, concentration, and temperature. Journal of Agricultural and Food Chemistry, 60(51), 12531-12539. https://doi.org/10.1021/jf304116s
Menchavez, M. T., Catipay, J. D., Espra, A. S., & Castillo, P. M. (2018). Antibacterial properties of Bambusa vulgaris (Bamboo) leaves and Eryngium foetidum (Culantro) leaves against Staphylococcus aureus and Escherichia coli bacteria. Journal of Medicinal Plants Research, 6(1), 6-13.
Nirmala, C., & Bisht, M. S. (2017). Bamboo: A prospective ingredient for functional food and nutraceuticals. Bamboo Journal (Japan Bamboo Society), 30, 82-99.
Nirmala, C., Bisht, M. S., Bajwa, H. K., & Santosh, O. (2018). Bamboo: A rich source of natural antioxidants and its applications in the food and pharmaceutical industry. Trends in Food Science & Technology, 77, 91-99. https://doi.org/10.1016/j.tifs.2018.05.003.
Nummer, B. A. (2013). Kombucha brewing under the Food and Drug Administration model Food Code: risk analysis and processing guidance. Journal of Environmental Health, 76(4), 8-11.
Patrón-Vázquez, J., Baas-Dzul, L., Medina-Torres, N., Ayora-Talavera, T., Sánchez-Contreras, Á., García-Cruz, U., & Pacheco, N. (2019). The effect of drying temperature on the phenolic content and functional behavior of flours obtained from lemon wastes. Agronomy, 9(9), Article 474. https://doi.org/10.3390/agronomy9090474
Rathod, J. D., Pathak, N. L., Patel, R. G., Jivani, N. P., Bhatt, N. M. (2011). Phytopharmacological properties of Bambusa arundinacea as a potential medicinal tree: An overview. Journal of Applied Pharmaceutical Science, 1(10), 27-31.
Roslan, A. S., Ismail, A., Ando, Y. & Azlan, A. (2020). Effect of drying methods and parameters on the antioxidant properties of tea (Camellia sinensis) leaves. Food Production, Processing and Nutrition, 2(1), Article 8. https://doi.org/10.1186/s43014-020-00022-0.
Sharma, Y. K., Mangla, S. K., Patil, P. P., & Liu, S. (2019). When challenges impede the process. Management Decision, 57, 995-1017. https://doi.org/10.1108/MD-09-2018-1056
Singhal, P., Bal, L. M., Satya, S., Sudhakar, P., & Naik, S. N. (2013). Bamboo shoots: a novel source of nutrition and medicine. Critical Reviews in Food Science and Nutrition, 53(5), 517-534. https://doi.org/10.1080/10408398.2010.531488
Silva, K. A., Uekane, T. M., de Miranda, J. F., Ruiz, L. F., da Motta, J. C. B., Silva, C. B., ... & Lima, A. R. (2021). Kombucha beverage from non-convention edible plant infusion and green tea: Characterization, toxicity, antioxidant activities and antimicrobial. Biocatalysis and Agricultural Biotechnology, 34, Article 102032. https://doi.org/10.1016/j.bcab.2021.102032.
Thaiwong, N., & Chaiwong, U. (2020). Drying temperature of corn silk tea: physical properties, total phenolic content, antioxidant activity and flavonoid content. Food and Applied Bioscience Journal, 8(3), 38-48.
Tran, T., Grandvalet, C., Verdier, F., Martin, A., Alexandre, H., & Tourdot-Maréchal, R. (2020). Microbial dynamics between yeasts and acetic acid bacteria in kombucha: Impacts on the chemical composition of the beverage. Foods, 9(7), Article 963. https://doi.org/10.3390/foods9070963
Velićanski, A. S., Cvetković, D., & Markov, S. (2013). Characteristics of kombucha fermentation on medicinal herbs from Lamiaceae family. Romanian Biotechnological Letters, 18(1), 8034-8042.
Villarreal-Soto, S. A., Beaufort, S., Bouajila, J., Souchard, J. P., Renard, T., Rollan, S., & Taillandier, P. (2019). Impact of fermentation conditions on the production of bioactive compounds with anticancer, anti-inflammatory and antioxidant properties in kombucha tea extracts. Process Biochemistry, 83, 44-54. https://doi.org/10.1016/j.procbio.2019.05.004.
Villarreal-Soto, S. A., Bouajila, J., Pace, M., Leech, J., Cotter, P. D., Souchard, J. P., Taillandier, P., & Beaufort, S. (2020). Metabolome-microbiome signatures in the fermented beverage, Kombucha. International Journal of Food Microbiology, 333, Article 108778. https://doi.org/10.1016/j.ijfoodmicro.2020.108778.
Wasnik, D. D., & Tumane, P. M. (2014). Antibacterial activity of Bambusa bambose L. against multiple drug resistant (mdr) bacteria isolated from clinical specimen. International Journal of Pharmaceutical Sciences Review and Research, 25(1), 215-218.
Xiong, R. G., Wu, S. X., Cheng, J., Saimaiti, A., Liu, Q., Shang, A., ... & Li, H. B. (2023). Antioxidant activities, phenolic compounds, and sensory acceptability of kombucha-fermented beverages from bamboo leaf and mulberry leaf. Antioxidants, 12(8), Article 1573. https://doi.org/10.3390/antiox12081573
Yang, J., & Liu, R. H. (2012). The phenolic profiles and antioxidant activity in different types of tea. International of Food Science and Technology, 48, 163-171. https://doi.org/10.1111/j.1365-2621.2012.03173.x
Zhang, Y., Bao, B., Lu, B., Ren, Y., Tie, X., & Zhang, Y. (2005). Determination of flavone C-glucosides in antioxidant of bamboo leaves (AOB) fortified foods by reversed-phase high-performance liquid chromatography with ultraviolet diode array detection. Journal of Chromatography A, 1065(2), 177–185. https://doi.org/10.1016/j.chroma.2004.12.086
Zhang, B., Zhang, Y., Li, H., Deng, Z., & Tsao, R. (2020). A review on insoluble-bound phenolics in plant-based food matrix and their contribution to human health with future perspectives. Trends in Food Science & Technology, 105, 347-362. https://doi.org/10.1016/j.tifs.2020.09.029
Zhao, C. N., Tang, G. Y., Cao, S. Y., Xu, X. Y., Gan, R. Y., Liu, Q., ... & Li, H. B. (2019). Phenolic profiles and antioxidant activities of 30 tea infusions from green, black, oolong, white, yellow and dark teas. Antioxidants, 8(7), Article 215. https://doi.org/10.3390/antiox8070215
Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64, 555-559.
Zou, C., Li, R. Y., Chen, J. X., Wang, F., Gao, Y., Fu, Y. Q., ... & Yin, J. F. (2021). Zijuan tea- based kombucha: Physicochemical, sensorial, and antioxidant profile. Food Chemistry, 363, Article 130322. https://doi.org/10.1016/j.foodchem.2021.130322
Downloads
Published
How to Cite
License
Copyright (c) 2024 Journal of Current Science and Technology
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.