Phytochemical Content, Antioxidant and α-Glucosidase Inhibitory Activities of Gynostemma pentaphyllum and Gymnema inodorum Extracts
DOI:
https://doi.org/10.59796/jcst.V14N3.2024.54Keywords:
Gynostemma pentaphyllum, Gymnema inodorum, hyperglycemia, anti-α-glucosidase, anti-diabetic, antioxidantAbstract
The prevention of hyperglycemia and diabetic complications is essential for diabetes management. Chronic hyperglycemia accelerates the glycation process, increasing advanced glycation end products (AGEs), triggering oxidative stress, and inflammation, thereby causing adverse diabetic complications. Anti-hyperglycemic and antioxidant properties are described for Gynostemma pentaphyllum (GP) and Gymnema inodorum (GI). With the hypothesis that combined therapy may exert better benefits compared to monotherapy, this study aimed to investigate the anti-diabetic and antioxidant activities of combined GP and GI formulas. Plants were extracted with hot water extraction and subjected to testing of anti-α-glucosidase and antioxidant activities, as well as total phenolic content. The extract formula of GP:GI (1:1, w/w) exhibited the highest total phenolic content, and ABTS radical scavenging activity, with values of 4.16 ± 0.21 mg GAE/g extract and 5.06 ± 0.46 mg TE/g extract, respectively. In addition, the combination of GP and GI extracts at ratios of (1:1, w/w) and (2:1, w/w) demonstrated inhibitory activity against α-glucosidase, reducing its activity by 30.40% and 34.04%, respectively. This property was found to be higher, compared to the activity of a single GP or GI treatment at the same concentration. Thus, results indicated that combining aqueous extracts from Gynostemma pentaphyllum and Gymnema inodorum has better antioxidant and anti-diabetic properties. This study supports the use of a combined GP:GI formula as a therapeutic remedy for controlling complications in individuals with hyperglycemia.
References
Adisakwattana, S., Ruengsamran, T., Kampa, P., & Sompong, W. (2012). In vitro inhibitory effects of plant-based foods and their combinations on intestinal α-glucosidase and pancreatic α-amylase. BMC Complementary and Alternative Medicine, 12, 1-8. https://doi.org/10.1186/1472-6882-12-110
Ahmed, A., Saleem, M. A., Saeed, F., Afzaal, M., Imran, A., Nadeem, M., ... & Al Jbawi, E. (2023). Gynostemma pentaphyllum an immortal herb with promising therapeutic potential: a comprehensive review on its phytochemistry and pharmacological perspective. International Journal of Food Properties, 26(1), 808-832. https://doi.org/10.1080/10942912.2023.2185566
Angeli, F., Reboldi, G., Poltronieri, C., Lazzari, L., Sordi, M., Garofoli, M., ... & Verdecchia, P. (2015). Hyperglycemia in acute coronary syndromes: from mechanisms to prognostic implications. Therapeutic Advances in Cardiovascular Disease, 9(6), 412-424. https://doi.org/10.1177/1753944715594528
Bhatia, A., Singh, B., Arora, R., & Arora, S. (2019). In vitro evaluation of the α-glucosidase inhibitory potential of methanolic extracts of traditionally used antidiabetic plants. BMC Complementary and Alternative Medicine, 19(1), Article 74. https://doi.org/10.1186/s12906-019-2482-z
Chayarop, K., Temsiririrkkul, R., Peungvicha, P., Wongkrajang, Y., Chuakul, W., Amnuoypol, S., & Ruangwises, N. (2011). Antidiabetic effects and in vitro antioxidant activity of Pseuderanthemum palatiferum (Nees) Radlk. ex Lindau Leaf Aqueous Extract. Mahidol University Journal of Pharmaceutical Sciences, 38(3-4), 13-22.
Chiranthanut, N., Teekachunhatean, S., Panthong, A., Khonsung, P., Kanjanapothi, D., & Lertprasertsuk, N. (2013). Toxicity evaluation of standardized extract of Gynostemma pentaphyllum Makino. Journal of Ethnopharmacology, 149(1), 228-234. https://doi.org/10.1016/j.jep.2013.06.027
Choi, H. S., Zhao, T. T., Shin, K. S., Kim, S. H., Hwang, B. Y., Lee, C. K., & Lee, M. K. (2013). Anxiolytic effects of herbal ethanol extract from Gynostemma pentaphyllum in mice after exposure to chronic stress. Molecules, 18(4), 4342-4356. https://doi.org/10.3390/molecules18044342
Dai, J., & Mumper, R. J. (2010). Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules, 15(10), 7313-7352. https://doi.org/10.3390/molecules15107313
GutiErrez-Grijalva, E. P., Ambriz-Pere, D. L., Leyva-Lopez, N., Castillo-Lopez, R. I., & Heiedia, J. B. (2016). Review: dietary phenolic compounds, health benefits and bioaccessibility. Archivos Latinoamericanos de Nutricion, 66(2), 87-100.
Ha, T. K. Q., Pham, H. T. T., Cho, H. M., Tran, V. O., Yang, J. L., Jung, D. W., ... & Oh, W. K. (2019). 12,23-Dione dammarane triterpenes from Gynostemma longipes and their muscle cell proliferation activities via activation of the AMPK pathway. Scientific Reports, 9(1), Article 1186. https://doi.org/10.1038/s41598-018-37808-9
Hanhineva, K., Törrönen, R., Bondia-Pons, I., Pekkinen, J., Kolehmainen, M., Mykkänen, H., & Poutanen, K. (2010). Impact of dietary polyphenols on carbohydrate metabolism. International Journal of Molecular Sciences, 11(4), 1365-1402. https://doi.org/10.3390/ijms11041365
Hossain, U., Das, A. K., Ghosh, S., & Sil, P. C. (2020). An overview on the role of bioactive α-glucosidase inhibitors in ameliorating diabetic complications. Food Chem Toxicol, 145, Article 111738. https://doi.org/10.1016/j.fct.2020.111738
Ibrahim, A., Onyike, E., Nok, A. J., & Umar, I. A. (2017). Combined effect on antioxidant properties of Gymnema sylvestre and Combretum micranthum leaf extracts and the relationship to hypoglycemia. European Scientific Journal, 13(36), 266-281. https://doi.org/10.19044/esj.2017.v13n36p266
Jeytawan, N., Yadoung, S., Jeeno, P., Yana, P., Sutan, K., Naksen, W., ... & Hongsibsong, S. (2022). Antioxidant and phytochemical potential of and phytochemicals in Gymnema inodorum (Lour.) Decne in northern Thailand. Plants (Basel), 11(24), Article 3498. https://doi.org/10.3390/plants11243498
Kashtoh, H., & Baek, K. H. (2022). Recent Updates on Phytoconstituent alpha-glucosidase inhibitors: An approach towards the treatment of Type Two Diabetes. Plants (Basel), 11(20), Article 2772. https://doi.org/10.3390/plants11202722
Kulprachakarn, K., Ounjaijean, S., Srichairatanakool, S., & Kanjanapothi, D. (2020). Evaluation of cytotoxicity and antioxidant potential of bael leaf (Aegle marmelos) on human hepatocellular carcinoma cell line. Pharmacognosy Research, 12(3), 267-271. https://doi.org/10.4103/pr.pr_15_20
Lawal, U., Mediani, A., H, M., Shaari, K., Ismail, I. S., Khatib, A., & Abas, F. (2015). Metabolite profiling of Ipomoea aquatica at different growth stages in correlation to the antioxidant and α-glucosidase inhibitory activities elucidated by 1H NMR-based metabolomics. Scientia Horticulturae, 192, 400-408. https://doi.org/10.1016/j.scienta.2015.06.036
Li, H.-B., Wong, C.-C., Cheng, K.-W., & Chen, F. (2008). Antioxidant properties in vitro and total phenolic contents in methanol extracts from medicinal plants. LWT - Food Science and Technology, 41(3), 385-390. https://doi.org/10.1016/j.lwt.2007.03.011
Li, J., Luo, J., Chai, Y., Guo, Y., Tianzhi, Y., & Bao, Y. (2021). Hypoglycemic effect of Taraxacum officinale root extract and its synergism with Radix astragali extract. Food Science & Nutrition, 9(4), 2075-2085. https://doi.org/10.1002/fsn3.2176
Medina-Meza, I. G., Aluwi, N. A., Saunders, S. R., & Ganjyal, G. M. (2016). GC-MS profiling of triterpenoid saponins from 28 quinoa varieties (Chenopodium quinoa Willd.) grown in Washington State. Journal of Agricultural and Food Chemistry, 64(45), 8583-8591. https://doi.org/10.1021/ acs.jafc.6b02156
Megalli, S., Davies, N. M., & Roufogalis, B. D. (2006). Anti-hyperlipidemic and hypoglycemic effects of Gynostemma pentaphyllum in the Zucker fatty rat. Journal of Pharmacy and Pharmacological Science, 9(3), 281-291.
Mohammad, S. A., Nabi, S. A., Marella, S., Thandaiah, K. T., Kumar, M. V. J., & Rao, C. A. (2014). Phytochemical screening and antihyperglycemic activity of Heliotropium indicum whole plant in streptozotocin induced diabetic rats. Journal of Applied Pharmaceutical Science, 4(12), 065-071. https://doi.org/10.7324/JAPS.2014.41212
Norkum ai, P., Wongkaew, M., Tangpao, T., Sritontip, P., Wongsiri, S., Junmahasathien, T., ... & Sommano, S. R. (2023). Relationships between phenotypes and chemotypic characteristics of local Gymnema inodorum plants in northern Thailand. Horticulturae, 9(4), Article 484. https://doi.org/ 10.3390/horticulturae9040484
Nuchuchua, O., Srinuanchai, W., Chansriniyom, C., Suttisansanee, U., Temviriyanukul, P., Nuengchamnong, N., & Ruktanonchai, U. (2024). Relationship of phytochemicals and antioxidant activities in Gymnema inodorum leaf extracts. Heliyon, 10(1), Article e23175. https://doi.org/10.1016/ j.heliyon.2023. e23175
Ounjaijean, S., Romyasamit, C., & Somsak, V. (2021). Evaluation of antimalarial potential of aqueous crude Gymnema inodorum leaf extract against Plasmodium berghei infection in mice. Evidence-Based Complementary and Alternative Medicine, 2021(1), Article 9932891. https://doi.org/10.1155/2021/9932891
Parklak, W., Ounjaijean, S., Kulprachakarn, K., & Boonyapranai, K. (2023). In vitro α-amylase and α-glucosidase inhibitory effects, antioxidant activities, and lutein content of nine different cultivars of marigold Flowers (Tagetes spp.). Molecules, 28(8), Article 3314. https://doi.org/10.3390/molecules 28083314
Šamec, D., Valek-Žulj, L., Martinez, S., Grúz, J., Piljac, A., & Piljac-Žegarac, J. (2016). Phenolic acids significantly contribute to antioxidant potency of Gynostemma pentaphyllum aqueous and methanol extracts. Industrial Crops and Products, 84, 104-107. https://doi.org/10.1016/j.indcrop.2016.01.035
Sanematsu, K., Kusakabe, Y., Shigemura, N., Hirokawa, T., Nakamura, S., Imoto, T., & Ninomiya, Y. (2014). Molecular mechanisms for sweet-suppressing effect of gymnemic acids. Journal of Biological Chemistry, 289(37), 25711-25720. https://doi.org/10.1074/jbc.M114.560409
Shahidi, F., & Ambigaipalan, P. (2015). Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects - A review. Journal of Functional Foods, 18, 820-897. https://doi.org/10.1016/j.jff.2015.06.018
Srinuanchai, W., Nooin, R., Pitchakarn, P., Karinchai, J., Suttisansanee, U., Chansriniyom, C., ... & Nuchuchua, O. (2021). Inhibitory effects of Gymnema inodorum (Lour.) Decne leaf extracts and its triterpene saponin on carbohydrate digestion and intestinal glucose absorp tion. Journal of Ethnopharmacology, 266, Article 113398. https://doi.org/ 10.1016/j.jep.020.113398
Tiamyom, K., Sirichaiwetchakoon, K., Hengpratom, T., Kupittayanant, S., Srisawat, R., Thaeomor, A., & Eumkeb, G. (2019). The Effects of Cordyceps sinensis (Berk.) Sacc. and Gymnema inodorum (Lour.) Decne. extracts on adipogenesis and lipase activity in vitro. Evidence-Based Complementary and Alternative Medicine, 2019, Article 5370473. https://doi.org/10.1155/2019/5370473
Trang, D. T., Yen, D. T. H., Cuong, N. T., Anh, L. T., Hoai, N. T., Tai, B. H., ... & Kiem, P. V. (2021). Pregnane glycosides from Gymnema inodorum and their α-glucosidase inhibitory activity. Natural Product Research, 35(13), 2157-2163. https://doi.org/10.1080/14786419.2019.1663517
Unuofin, J. O., & Lebelo, S. L. (2020). Antioxidant effects and mechanisms of medicinal plants and their bioactive compounds for the prevention and treatment of Type 2 Diabetes: An Updated Review. Oxidative Medicine and Cellular Longevity, 2020, Article 1356893. https://doi.org/10.1155/2020 /1356893
Wang, Z., Wang, Z., Huang, W., Suo, J., Chen, X., Ding, K., ... & Zhang, H. (2020). Antioxidant and anti-inflammatory activities of an anti-diabetic polysaccharide extracted from Gynostemma pentaphyllum herb. International Journal of Biological Macromolecules, 145, 484-491. https://doi.org/10.1016/j.ijbiomac.2019.12.213
Wang, Z., Zhao, X., Liu, X., Lu, W., Jia, S., Hong, T., ... & Zhan, X. (2019). Anti-diabetic activity evaluation of a polysaccharide extracted from Gynostemma pentaphyllum. International Journal of Biological Macromolecules, 126, 209-214. https://doi.org/10.1016/j.ijbiomac.2018.12.231
Wellen, K. E., & Hotamisligil, G. S. (2005). Inflammation, stress, and diabetes. The Journal of Clinical Investigation, 115(5), 1111-1119. https://doi.org/10.1172/jci25102
Wongklom, A., Banhan, N., & Noptalung, P. (2023). Influence of drying methods on total phenolics, total flavonoids and antioxidant activities in the gurmar leaf (Gymnema inodorum (Lour.) Decne.) powder. Creative Science, 15(2), Article 247531. https://doi.org/10.55674/cs.v15i2.247531
Xie, Z., Liu, W., Huang, H., Slavin, M., Zhao, Y., Whent, M., ... & Yu, L. (2010). Chemical composition of five commercial Gynostemma pentaphyllum samples and their radical scavenging, antiproliferative, and anti-inflammatory properties. Journal of Agricultural and Food Chemistry, 58(21), 11243-11249. https://doi.org/10.1021/jf1026372
Yang, F., Shi, H., Zhang, X., Yang, H., Zhou, Q., & Yu, L. L. (2013). Two new saponins from tetraploid jiaogulan (Gynostemma pentaphyllum), and their anti-inflammatory and α-glucosidase inhibitory activities. Food Chemistry, 141(4), 3606-3613. https://doi.org/10.1016/j.foodchem.2013.06.015
Zhang, Z., Luo, A., Zhong, K., Huang, Y., Gao, Y., Zhang, J., ... & Gao, X. (2013). α-glucosidase inhibitory activity by the flower buds of Lonicera japonica Thunb. Journal of Functional Foods, 5(3), 1253-1259. https://doi.org/10.1016/j.jff.2013.04.008
Zhao, Y., Xie, Z., Niu, Y., Shi, H., Chen, P., & Yu, L. (2012). Chemical compositions, HPLC/MS fingerprinting profiles and radical scavenging properties of commercial Gynostemma pentaphyllum (Thunb.) Makino samples. Food Chemistry, 134(1), 180-188. https://doi.org/10.1016/j.foodchem.2012.02.090
Downloads
Published
How to Cite
License
Copyright (c) 2024 Journal of Current Science and Technology
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.