Comparative Study: Extraction Conditions and Antioxidant and Antibacterial activities of Gracilaria fisheri
DOI:
https://doi.org/10.59796/jcst.V14N3.2024.52Keywords:
Sulfated polysaccharide, Gracilaria fisheri, antioxidant, antibacterialAbstract
Gracilaria fisheri (G. fisheri), sourced from the southern region of Thailand and recognized for its sulfated polysaccharides with diverse health benefits, underwent extraction under varying conditions by adjusting the ratio of water to ethanol and the duration of maceration. Six extraction conditions were systematically investigated, and their yields of extraction, sulfate content, antioxidant activity, and antimicrobial activity were compared. Among the conditions examined, the extraction utilizing solely water for a duration of 2 hrs. yielded the highest quantity (7.20±0.99 g) and highest sulfate content (215.86±2.67 µg/10 mg of crude extract). Furthermore, this extraction exhibited superior antioxidant activity as evidenced by the lowest IC50 values in DPPH (4.75±0.05 µg/mL) and ABTS (31.75±0.22 µg/mL) assays. Additionally, the extracts (10 mg/mL) manifested significant efficacy in inhibiting the growth of both Staphylococcus aureus (16.28±4.75 mm) and Staphylococcus epidermidis (15.33±3.27 mm) in comparison with the standard antibiotic, ciprofloxacin (5 µg), which exhibited inhibition zone diameters of 20.47±0.70 mm (Staphylococcus aureus) and 30.91±0.80 mm (Staphylococcus epidermidis). In conclusion, the most effective method for extracting G. fisheri is to solely utilize water for a duration of 2 hrs.
References
Adli, M. A., Idris, L., Mukhtar, S. M., Payaban, M., James, R. J., Halim, H., George, A., & Zohdi, R. M. (2024). Phytochemical assessment, antioxidant activity, and in vitro wound healing potential of Polygonum minus huds. Journal of Current Science and Technology, 14(1), Article18. https://doi.org/10.59796/jcst.V14N1.2024.18
Baluchamy, P., & Subramanian, A. (2023). Phytochemical screenings and evaluations of antibacterial and antioxidant activities of methanolic leaf extract of Senna auriculata (L). Roxb. Journal of Current Science and Technology, 13(2), 162-181. https://doi.org/10.59796/jcst.V13N2.2023.1734
Chattopadhyay, K., Ghosh, T., Pujol, C. A., Carlucci, M. J., Damonte, E. B., & Ray, B. (2008). Polysaccharides from Gracilaria corticata: Sulfation, chemical characterization and anti-HSV activities. International Journal of Biological Macromolecules, 43(4), 346-351. https://doi.org/10.1016/j.ijbiomac.2008.07.009
Costa, L. S., Fidelis, G. P., Cordeiro, S. L., Oliveira, R. M., Sabry, D. A., Câmara, R. B. G., ... & Rocha, H. A. O. (2010). Biological activities of sulfated polysaccharides from tropical seaweeds. Biomedicine & Pharmacotherapy, 64(1), 21-28. https://doi.org/10.1016/j.biopha.2009.03.005
Devi, K. P., Suganthy, N., Kesika, P., & Pandian, S. K. (2008). Bioprotective properties of seaweeds: In vitro evaluation of antioxidant activity and antimicrobial activity against food borne bacteria in relation to polyphenolic content. BMC Complementary and Alternative Medicine, 8(38), 1-11. https://doi.org/10.1186/1472-6882-8-38
Dodgson, K. S., & Price, R. G. (1962). A Note on the Determination of the Ester Sulphate Content of Sulphated Polysaccharides. Biochemical Journal, 84(1), 106-110. https://doi.org/10.1042/bj0840106
Dudonne, S., Vitrac, X., Coutiere, P., Woillez, M., & Merillon, M. J. (2009). Comparative Study of Antioxidant Properties and Total Phenolic Content of 30 Plant Extracts of Industrial Interest Using DPPH, ABTS, FRAP, SOD, and ORAC Assays. Journal of Agricultural and Food Chemistry, 57(5), 1768-1774. https://doi.org/10.1021/jf803011r
Ghosh, P., Adhikari, U., Ghosal, P. K., Pujol, C. A., Carlucci, M. J., Damonte, E. B., & Ray, B. (2004). In vitro anti-herpetic activity of sulfated polysaccharide fractions from Caulerpa racemosa. Phytochemistry, 65(23), 3151-3157. https://doi.org/10.1016/j.phytochem.2004.07.025
Huang, L., Shen, M., Morris, G. A., & Xie, J. (2019). Sulfated polysaccharides: Immunomodulation and signaling mechanisms .Trends in Food Science & Technology, 92, 1-11. https://doi.org/10.1016/j.tifs.2019.08.008
Imjongjairak, S., Ratanakhanokchai, K., Laohakunjit, N., Tachaapaikoon, C., Pason, P., & Waeonukul, R. (2015). Biochemical characteristics and antioxidant activity of crude and purified sulfated polysaccharides from Gracilaria fisher. Bioscience, Biotechnology, and Biochemistry, 80(3), 524-532. https://doi.org/10.1080/0.9168451.2015.1101334
Jun, J. Y., Jung, M. J., Jeong, I. H., Yamazaki, K., Kawai, Y., & Kim, B. M. (2018). Antimicrobial and antibiofilm activities of sulfated polysaccharides from marine algae against dental plaque bacteria. Marine Drugs, 16(9), Article 301. https://doi.org/10.3390/md16090301
Khongthong, S., Theapparat, Y., Roekgam, N., Tantisuwanno, C., Otto, M., & Piewngam, P. (2021). Characterization and immunomodulatory activity of sulfated galactan from the red seaweed Gracilaria fisheri. International Journal of Biological Macromolecules, 189, 705-714. https://doi.org/10.1016/j.ijbiomac.2021.08.182
Kim, I. H., Lee, D. G., Lee, S. H., Ha, J. M., Ha, B. J., Kim, S. K., & Lee, J. H. (2007). Antibacterial activity of Ulva lactuca against methicillin-resistant Staphylococcus aureus (MRSA). Biotechnology and Bioprocess Engineering, 12, 579-582. https://doi.org/10.1007/BF02931358
Kuda, T., & Ikemori, T. (2009). Minerals, polysaccharides and antioxidant properties of aqueous solutions obtained from macroalgal beach-casts in the Noto Peninsula, Ishikawa, Japan. Food Chemistry, 112(3), 575-581. https://doi.org/10.1016/j.foodchem.2008.06.008
Mahae, N., Sirivongpaisal, P., & Wattanakul, U. (2010). Extraction and Characterization of Polysaccharides from Gracilaria fisheri, Ulva rigida and Caulerpa racemosa. Trang, Thailand: Rajamangala University of Technology Srivijaya.
Nagahawatta, D. P., Liyanage, N. M., Jayawardena, T. U., Yang, F., Jayawardena, H. H. A. C. K., Kurera, M. J. M. S., ... & Jeon, Y. J. (2023). Functions and values of sulfated polysaccharides from seaweed. Algae, 38(4), 217-240. https://doi.org/10.4490/algae.2023.38.12.1
Qi, H., Zhang, Q., Zhao, T., Chen, R., Zhang, H., Niu, X., & Li, Z. (2005). Antioxidant activity of different sulfate content derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyta) in vitro. International Journal of Biological Macromolecules, 37(4), 195-199. https://doi.org/10.1016/j.ijbiomac.2005.10.008
Qiu, S.-M., Aweya, J. J., Liu, X., Liu, Y., Tang, S., Zhang, W., & Cheong, K. L. (2022). Bioactive polysaccharides from red seaweed as potent food supplements: a systematic review of their extraction, purification, and biological activities. Carbohydrate Polymers, 275, 1-16. https://doi.org/10.1016/j.carbpol.2021.118696
Rudtanatip, T., Pariwatthanakun, C., Somintara, S., Sakaew, W., & Wongprasert, K. (2022). Structural characterization, antioxidant activity, and protective effect against hydrogen peroxide-induced oxidative stress of chemically degraded Gracilaria fisheri sulfated galactans. International Journal of Biological Macromolecules, 206, 51-63. https://doi.org/10.1016/j.ijbiomac.2022.02.125
Wang, J., Zhang, Q., Zhang, Z., Zhang, J., & Li, P. (2009). Synthesized phosphorylated and aminated derivatives of fucoidan and their potential antioxidant activity in vitro. International Journal of Biological Macromolecules, 44(2), 170-174. https://doi.org/10.1016/j.ijbiomac.2008.11.010
Wassie, T., Niu, K., Xie, C., Wang, H., & Xin, W. (2021). Extraction Techniques, Biological Activities and Health Benefits of Marine Algae Enteromorpha prolifera Polysaccharide. Frontiers in Nutrition, 8, 1-13. https://doi.org /10.3389/fnut.2021.747928
Wojdyło, A., Oszmiański, J., & Czemerys, R. (2007). Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chemistry, 105(3), 940–949. https://doi.org/10.1016/j.foodchem.2007.04.038
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2024 Journal of Current Science and Technology
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.