Evaluation of the interaction of phenolic compounds contained in the Trisamo recipe using simplex lattice design


  • Jirapornchai Suksaeree Department of Pharmaceutical Chemistry, College of Pharmacy, Rangsit University, Patumthani 12000, Thailand
  • Chaowalit Monton Drug and Herbal Product Research and Development Center, College of Pharmacy, Rangsit University, Patumthani 12000, Thailand


chemical interaction, optimization, phenolic compound, simplex lattice design, Terminalia plants, Trisamo


This work sought to apply the simplex lattice design to determine the interaction between Terminalia chebula Retz. var. chebula, Terminalia arjuna Wight and Arn., and Terminalia bellirica (Gaertn.) Roxb., which are found in the traditional Trisamo recipe.  The phenolic compounds gallic acid, corilagin, chebulagic acid, and chebulinic acid were analyzed using validated high-performance liquid chromatography.  The results showed that a broader range of positive interaction was found in the decoction samples as opposed to the infusion samples.  Moreover, it was determined that the original Trisamo recipe, which boasts an equal weight ratio of all three Terminalia plants, obtained from the decoction, exhibited a 250% increase in total content of the phenolic compounds as compared with the effects of any of the plants individually, while the original Trisamo recipe obtained from the infusion group revealed a 200% increase in total content of the phenolic compounds when compared with the results of an individual plant.  Data from this work could be used to describe the synergism of plant compositions of Trisamo based on the chemical interactions, by enhancing extraction efficiency of total phenolic compounds.  Moreover, they may support that the use of the Trisamo with an equal weight ratio distribution of the three Terminalia plants is in fact already appropriate.


Annegowda, H. V., Nee, C. W., Mordi, M. N., Ramanathan, S., & Mansor, S. M. (2010). Evaluation of phenolic content and antioxidant property of hydrolysed extracts of Terminalia catappa L. leaf. Asian Journal of Plant Sciences, 9, 479-485. DOI: 10.3923/ajps.2010.479.485

Aryal, S., Baniya, M. K., Danekhu, K., Kunwar, P., Gurung, R., & Koirala, N. (2019). Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from western Nepal. Plants, 8(4), Article number: 96. DOI: 10.3390/plants8040096

Asae, A., Meemak, P., Poonthananiwatkul, B., Hemtrakoonwong, R., & Sama-ae, S. (2019). Antibacterial activity of ethanolic extract of Trisamo against diarrheal pathogen. Princess Naradhiwas University Journal, 11(3), 241-247.

Caesar, L. K., & Cech, N. B. (2019). Synergy and antagonism in natural product extracts: when 1 + 1 does not equal 2. Natural Product Reports, 36(6), 869-888. DOI: 10.1039/C9NP00011A

Charoenchai, L., Pathompak, P., Madaka, F., Settharaksa, S., & Saingam, W. (2016). HPLC-MS profiles and quantitative analysis of Triphala formulation. Bulletin of Health, Science and Technology, 14(1), 57-67.

Deshmukh, A., Pawar, A., Tapre, V., & Deshmukh, S. (2019). Comparative evaluation of quality parameters in leaves, fruits and bark of Terminalia sp. International Journal of Chemical Studies, 7(2), 64-69.

Duangjit, S., Mehr, L. M., Kumpugdee-Vollrath, M., & Ngawhirunpat, T. (2014). Role of simplex lattice statistical design in the formulation and optimization of microemulsions for transdermal delivery. Biological and Pharmaceutical Bulletin, 37(12), 1948-1957. DOI: 10.1248/bpb.b14-00549

Duangjit, S., Obata, Y., Sano, H., Kikuchi, S., Onuki, Y., Opanasopit, P., . . . Takayama, K. (2012). Menthosomes, novel ultradeformable vesicles for transdermal drug delivery: optimization and characterization. Biological and Pharmaceutical Bulletin, 35(10), 1720-1728. DOI:10.1248/bpb.b12-00343

Foucquier, J., & Guedj, M. (2015). Analysis of drug combinations: current methodological landscape. Pharmacology Research & Perspectives, 3(3), Article number: e00149. DOI:10.1002/prp2.149

Gan, J., Feng, Y., He, Z., Li, X., & Zhang, H. (2017). Correlations between antioxidant activity and alkaloids and phenols of maca (Lepidium meyenii). Journal of Food Quality, 2017, Article number: 3185945. DOI: 10.1155/2017/3185945

Li, X., Wu, X., & Huang, L. (2009). Correlation between antioxidant activities and phenolic contents of radix Angelicae sinensis (Danggui). Molecules, 14(12), 5349-5361. DOI: 10.3390/molecules14125349

Mahajan, A., & Pai, N. (2010). Simultaneous isolation and identification of phytoconstituents from Terminalia chebula by preparative chromatography. Journal of Chemical and Pharmaceutical Research, 2(5), 97-103.

Monton, C., & Luprasong, C. (2019). Effect of temperature and duration time of maceration on nitrate content of Vernonia cinerea (L.) Less.: Circumscribed central composite design and method validation. International Journal of Food Science, 2019, Article number: 1281635. DOI: 10.1155/2019/1281635

Monton, C., Luprasong, C., & Charoenchai, L. (2019a). Acceleration of turmeric drying using convection and microwave-assisted drying technique: An optimization approach. Journal of Food Processing and Preservation, 43(9), Article number: e14096. DOI: 10.1111/jfpp.14096

Monton, C., Luprasong, C., & Charoenchai, L. (2019b). Convection combined microwave drying affect quality of volatile oil compositions and quantity of curcuminoids of turmeric raw material. Revista Brasileira de Farmacognosia, 29(4), 434-440. DOI: 10.1016/j.bjp.2019.04.006

Monton, C., Settharaksa, S., Luprasong, C., & Songsak, T. (2019). An optimization approach of dynamic maceration of Centella asiatica to obtain the highest content of four centelloids by response surface methodology. Revista Brasileira de Farmacognosia, 29(2), 254-261. DOI: 10.1016/j.bjp.2019.01.001

Monton, C., & Suksaeree, J. (2020). Interaction of plant ingredients contained in Chatuphalathika herbal remedy based on chemical analysis aspect: four-component simplex lattice design. Advances in Traditional Medicine. DOI: 10.1007/s13596-020-00505-y

Monton, C., Wunnakup, T., Suksaeree, J., Charoenchai, L., & Chankana, N. (2020). Investigation of the interaction of herbal ingredients contained in Triphala recipe using simplex lattice design: Chemical analysis point of view. International Journal of Food Science, 2020, Article number: 5104624. DOI: 10.1155/2020/5104624

Nanna, U., Jaijoy, K., Soonthornchareonnon, N., & Sireeratawong, S. (2015). Analgesic and antipyretic activity of Tri-Sa-Maw recipe. Journal of the Medical Association of Thailand, 98(Suppl. 2), S16-S21.

Piluzza, G., & Bullitta, S. (2011). Correlations between phenolic content and antioxidant properties in twenty-four plant species of traditional ethnoveterinary use in the Mediterranean area. Pharmaceutical Biology, 49(3), 240-247. DOI: 10.3109/13880209.2010.501083

Rajurkar, N. S., & Hande, S. M. (2011). Estimation of phytochemical content and antioxidant activity of some selected traditional Indian medicinal plants. Indian Journal of Pharmaceutical Sciences, 73(2), 146-151. DOI: 10.4103/0250-474X.91574

Rice-Evans, C., Miller, N., & Paganga, G. (1997). Antioxidant properties of phenolic compounds. Trends in Plant Science, 2(4), 152-159. DOI: 10.1016/S1360-1385(97)01018-2

Saha, S., & Verma, R. J. (2016). Antioxidant activity of polyphenolic extract of Terminalia chebula Retzius fruits. Journal of Taibah University for Science, 10(6), 805-812. DOI: 10.1016/j.jtusci.2014.09.003

Save, S. N., & Choudhary, S. (2017). Effects of triphala and guggul aqueous extracts on inhibition of protein fibrillation and dissolution of preformed fibrils. RSC Advances, 7(33), 20460-20468. DOI: 10.1039/c6ra28440j

Sheng, Z., Zhao, J., Muhammad, I., & Zhang, Y. (2018). Optimization of total phenolic content from Terminalia chebula Retz. fruits using response surface methodology and evaluation of their antioxidant activities. PLoS One, 13(8), Article number: e0202368. DOI: 10.1371/journal.pone.0202368

Tallarida, R. J. (2011). Quantitative methods for assessing drug synergism. Genes & Cancer, 2(11), 1003-1008. DOI: 10.1177/1947601912440575

Turumtay, E. A., İslamoğlu, F., Çavuş, D., Şahin, H., Turumtay, H., & Vanholme, B. (2014). Correlation between phenolic compounds and antioxidant activity of Anzer tea (Thymus praecox Opiz subsp. caucasicus var. caucasicus). Industrial Crops and Products, 52, 687-694. DOI: 10.1016/j.indcrop.2013.11.042

Vamanu, E., & Nita, S. (2013). Antioxidant capacity and the correlation with major phenolic compounds, anthocyanin, and tocopherol content in various extracts from the wild edible Boletus edulis mushroom. Biomed Research International, 2013, Article number: 313905. DOI: 10.1155/2013/313905

Wanigasekera, W. M. A. P., Joganathan, A., Pethiyagoda, R., Yatiwella, L. N., & Attanayake, H. M. D. A. B. (2019). Comparison of antioxidant activity, phenolic and flavonoid contents of selected medicinal plants in Sri Lanka. Ceylon Journal of Science, 48(2), 155-162. DOI: 10.4038/cjs.v48i2.7619

Yuan, H., Ma, Q., Cui, H., Liu, G., Zhao, X., Li, W., & Piao, G. (2017). How can synergism of traditional medicines benefit from network pharmacology? Molecules, 22(7), Article number: 1135. DOI: 10.3390/molecules22071135

Zhou, X., Seto, S. W., Chang, D., Kiat, H., Razmovski-Naumovski, V., Chan, K., & Bensoussan, A. (2016). Synergistic effects of Chinese herbal medicine: A comprehensive review of methodology and current research. Frontiers in Pharmacology, 7, Article number: 201. DOI: 10.3389/fphar.2016.00201




How to Cite

Suksaeree, J. ., & Monton, C. . (2023). Evaluation of the interaction of phenolic compounds contained in the Trisamo recipe using simplex lattice design. Journal of Current Science and Technology, 11(1), 100–113. Retrieved from https://ph04.tci-thaijo.org/index.php/JCST/article/view/362



Research Article