The Effect of 1'-acetoxychavicol Acetate on A549 Human Non-small Cell Lung Cancer

Authors

  • Pataweekorn Ketkomol Graduate Program, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
  • Thanapat Songsak Department of Pharmacognosy, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
  • Suchada Jongrungruangchok Department of Pharmaceutical Chemistry, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
  • Fameera Madaka Drug and herbal Product Research and Development Center, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
  • Nalinee Pradubyat Department of Pharmacology, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand

DOI:

https://doi.org/10.59796/jcst.V14N2.2024.43

Keywords:

Lung Cancer, 1' Acetoxychavicol Acetate, Anti-proliferative activity, Antimigration, Colony forming

Abstract

Lung cancer, a global leading cause of cancer mortality, requires safer and more effective treatments. 1'-acetoxychavicol acetate (ACA) is notable for its wide-ranging therapeutic properties, spanning anticancer, anti-inflammatory, and anti-obesity effects. While its efficacy has been explored in various cell lines, its potential against lung cancer remains few reported. This research aimed to investigate the impact of ACA on cytotoxicity, anti-proliferation, and antimigration potential in A549 human non-small cell lung cell lines. The investigation utilized MTT assays to assess cell viability and determined the IC50 values of ACA at 24, 48, and 72 hours to be 50.42 µM, 33.22 µM, and 21.66 µM, respectively. These results reveal a concentration- and time-dependent reduction in cell viability following ACA treatment. In addition, anti-proliferation was performed using colony-forming assays, and ACA showed notable efficacy in significantly decreasing colony formation, highlighting its strong impact on cell proliferation and viability. In the final part, ACA had promising inhibitory effects on migration, which varied depending on the dose used in the scratch assay. In conclusion, ACA highlighted cytotoxic and anti-proliferation properties of A549 cell line, supporting its potential role in lung cancer therapy pending further investigation and development.

References

Addeo, A., Passaro, A., Malapelle, U., Banna, G. L., Subbiah, V., & Friedlaender, A. (2021). Immunotherapy in non-small cell lung cancer harbouring driver mutations. Cancer Treatment Reviews, 96, Article 102179. https://doi.org/10.1016/j.ctrv.2021.102179

Adorno, M., Cordenonsi, M., Montagner, M., Dupont, S., Wong, C., Hann, B., ... & Piccolo, S. (2009). A mutant-p53/Smad complex opposes p63 to empower TGFβ-induced metastasis. Cell, 137(1), 87-98. https://doi.org/10.1016/j.cell.2009.01.039

Awang, K., Azmi, M. N., Aun, L. I. L., Aziz, A. N., Ibrahim, H., & Nagoor, N. H. (2010). The apoptotic effect of 1′s-1′-acetoxychavicol acetate from Alpinia conchigera on human cancer cells. Molecules, 15(11), 8048-8059. https://doi.org/10.3390/molecules15118048

Baradwaj, R. G., Rao, M. V., & Kumar, T. S. (2017). Novel purification of 1′S-1′-Acetoxychavicol acetate from Alpinia galanga and its cytotoxic plus antiproliferative activity in colorectal adenocarcinoma cell line SW480. Biomedicine & Pharmacotherapy, 91, 485-493. https://doi.org/10.1016/j.biopha.2017.04.114

Carmichael, J., DeGraff, W. G., Gazdar, A. F., Minna, J. D., & Mitchell, J. B. (1987). Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Research, 47(4), 936-942.

Chotchoungchatchai, S., Saralamp, P., Jenjittikul, T., Pornsiripongse, S., & Prathanturarug, S. (2012). Medicinal plants used with Thai Traditional Medicine in modern healthcare services: a case study in Kabchoeng Hospital, Surin Province, Thailand. Journal of Ethnopharmacology, 141(1), 193–205. https://doi.org/10.1016/j.jep.2012.02.019

In, L. L., Arshad, N. M., Ibrahim, H., Azmi, M. N., Awang, K., & Nagoor, N. H. (2012). 1'-Acetoxychavicol acetate inhibits growth of human oral carcinoma xenograft in mice and potentiates cisplatin effect via proinflammatory microenvironment alterations. BMC Complementary and Alternative Medicine, 12, 179-192. https://doi.org/10.1186/1472-6882-12-179

Jones, G. S., & Baldwin, D. R. (2018). Recent advances in the management of lung cancer. Clinical Medicine (London, England), 18(Suppl 2), s41–s46. https://doi.org/10.7861/clinmedicine.18-2-s41

Jongrungruangchok, S., Pradubyat, N., Songsak, T., Jarintanun, F., Wall, M., & Wongwiwatthananukit, S. (2019). Cytotoxicity and induction of the apoptotic activity of hirsutinolide series/sesquiterpene lactones from Vernonia cinerea on human colorectal cancer cells (COLO 205). Journal of Current Science and Technology, 9(1), 41-47.

Kaewpiboon, C., Boonnak, N., Kaowinn, S., & Chung, Y. H. (2018). Formoxanthone C, isolated from Cratoxylum formosum ssp. pruniflorum, reverses anticancer drug resistance by inducing both apoptosis and autophagy in human A549 lung cancer cells. Bioorganic & Medicinal Chemistry Letters, 28(4), 820–825. https://doi.org/10.1016/j.bmcl.2017.07.066

Kalluri, R. (2009). EMT: when epithelial cells decide to become mesenchymal-like cells. The Journal of Clinical Investigation, 119(6), 1417–1419. https://doi.org/10.1172/JCI39675

Kojima-Yuasa, A., & Matsui-Yuasa, I. (2020). Pharmacological Effects of 1′-Acetoxychavicol Acetate, a Major Constituent in the Rhizomes of Alpinia galanga and Alpinia conchigera. Journal of Medicinal Food, 23(5), 465-475. https://doi.org/10.1089/jmf.2019.4490

Kopustinskiene, D. M., Jakstas, V., Savickas, A., & Bernatoniene, J. (2020). Flavonoids as Anticancer Agents. Nutrients, 12(2), 457-470. https://doi.org/10.3390/nu12020457

Kurgan, N., Tsakiridis, E., Kouvelioti, R., Moore, J., Klentrou, P., & Tsiani, E. (2017). Inhibition of Human Lung Cancer Cell Proliferation and Survival by Post-Exercise Serum Is Associated with the Inhibition of Akt, mTOR, p70 S6K, and Erk1/2. Cancers, 9(5), 46-59. https://doi.org/10.3390/cancers9050046

Liew, S. K., Azmi, M. N., In, L., Awang, K., & Nagoor, N. H. (2017). Anti-proliferative, apoptotic induction, and anti-migration effects of hemi-synthetic 1'S-1'-acetoxychavicol acetate analogs on MDA-MB-231 breast cancer cells. Drug design, Development and Therapy, 11, 2763–2776. https://doi.org/10.2147/DDDT.S130349

Luo, X., Luo, W., Lin, C., Zhang, L., & Li, Y. (2014). Andrographolide inhibits proliferation of human lung cancer cells and the related mechanisms. International Journal of Clinical and Experimental Medicine, 7(11), 4220–4225.

Nelson, V. K., Sahoo, N. K., Sahu, M., Sudhan, H. H., Pullaiah, C. P., & Muralikrishna, K. S. (2020). In vitro anticancer activity of Eclipta alba whole plant extract on colon cancer cell HCT-116. BMC Complementary Medicine and Therapies, 20, 1-8. https://doi.org/10.1186/s12906-020-03118-9

Phuah, N. H., Azmi, M. N., Awang, K., & Nagoor, N. H. (2017). Down-Regulation of MicroRNA-210 Confers Sensitivity towards 1'S-1'-Acetoxychavicol Acetate (ACA) in Cervical Cancer Cells by Targeting SMAD4. Molecules and Cells, 40(4), 291–298. https://doi.org/10.14348/molcells.2017.2285

Pradubyat, N., Giannoudis, A., Elmetwali, T., Mahalapbutr, P., Palmieri, C., Mitrpant, C., & Ketchart, W. (2022). 1′-Acetoxychavicol Acetate from alpinia galanga represses proliferation and invasion, and induces apoptosis via HER2-signaling in endocrine-resistant breast cancer cells. Planta Medica, 88(02), 163-178. https://doi.org/10.1055/a-1307-3997.

Prisa, D. (2022). Aloe: medicinal properties and botanical characteristics. Journal of Current Science and Technology, 12(3), 605-614. https://doi.org/10.14456/jcst.2022.46

Saelee, P., Pongtheerat, T., Sophonnithiprasert, T., & Jinda, W. (2022). Clinicopathological significance of FANCAmRNA expression in Thai patients with breast cancer. Journal of Current Science and Technology, 12(3), 408-416. https://doi.org/10.14456/jcst.2022.31

Siegel, R., Ma, J., Zou, Z., & Jemal, A. (2014). Cancer statistics, 2014. CA: A Cancer Journal for Clinicians, 64(1), 9-29. https://doi.org/10.3322/caac.21208

Sok, S. P., Arshad, N. M., Azmi, M. N., Awang, K., Ozpolat, B., & Hasima Nagoor, N. (2017). The apoptotic effect of 1′S-1′-Acetoxychavicol Acetate (ACA) enhanced by inhibition of non-canonical autophagy in human non-small cell lung cancer cells. PLoS One, 12(2), Article e0171329. https://doi.org/10.1371/journal.pone.0171329

Srithi, K., Trisonthi, C., Wangpakapattanawong, P., & Balslev, H. (2012). Medicinal plants used in Hmong women's healthcare in northern Thailand. Journal of Ethnopharmacology, 139(1), 119–135. https://doi.org/10.1016/j.jep.2011.10.028

Vidal, M. N. P., & Granjeiro, J. M. (2017). Cytotoxicity tests for evaluating medical devices: an alert for the development of biotechnology health products. Journal of Biomedical Science and Engineering, 10(9), 431-443. https://doi.org/10.4236/jbise.2017.109033

Wang, J., Zhang, L., Chen, G., Zhang, J., Li, Z., Lu, W., ... & Pang, X. (2014). Small molecule 1′-acetoxychavicol acetate suppresses breast tumor metastasis by regulating the SHP-1/STAT3/MMPs signaling pathway. Breast Cancer Research and Treatment, 148, 279-289. https://doi.org/10.1007/s10549-014-3165-6

Xu, S., Kojima-Yuasa, A., Azuma, H., Huang, X., Norikura, T., Kennedy, D. O., & Matsui-Yuasa, I. (2008). (1′ S)-Acetoxychavicol acetate and its enantiomer inhibit tumor cells proliferation via different mechanisms. Chemico-biological Interactions, 172(3), 216-223

Downloads

Published

2024-05-02

How to Cite

Ketkomol, P., Songsak, T., Jongrungruangchok, S., Madaka, F., & Pradubyat, N. (2024). The Effect of 1’-acetoxychavicol Acetate on A549 Human Non-small Cell Lung Cancer. Journal of Current Science and Technology, 14(2), Article 43. https://doi.org/10.59796/jcst.V14N2.2024.43

Issue

Section

Research Article

Categories